Logic: another thing that

penguins aren’t very good at.
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FIGURE 1.1 — A potentiometer is a three-terminat circuit element
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FIGURE 1.2 — Two potentiometers in parallel
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Puzzle 1
On the table before you are three small boxes, labeled A, B, and C. Inside each box is a
colored plastic chip. One chip is red, one is white, and one is blue. You do not know which

chip is in which box. Then, you are told that of the next three statements, exactly one is
true:

(a) box A contains the red chip;
(b) box B does not contain the red chip;
(c) box C does not contain the blue chip.
You do not know which of the three statements is the true one. From al| this, determine the

color of the chip in each box. Puzzle 1 can be solved by some very careful reasoning that I'll



show you at the end of this chapter (but don't peek until you've given it a good try yourself);
it can also be solved through the routine application of Boolean aigebra.

Now, just to really convince you that Boolean algebra is a most powerful tool, let me ask
you to consider the next three puzzles, ones that | feel confident you will not be able to
solve with simply "some very careful reasoning" or, at least, not until you've expended
considerable mental effort. And yet, as we proceed through the book, I'l show you how they

too will easily yield to routine Boolean algebraic analysis.3

Puzzle 2

The local truant officer has six boys under suspicion for stealing apples. He knows that
only two are actually guilty (but not which two), and so he questions each boy individually.

(a) Harry said "Charlie and George did it."

(b) James said "Donald and Tom did it."

(c) Donald said "Tom and Charlie did it."

(d) George said "Harry and Charlie did it."

(e) Charlie said "Donald and James did it."

(f) Tom couldn’t be found and didn’t say anything.

(9) Of the five boys interrogated, four of them each correctly named one of the guilty.

(h) The remaining boy lied about both of the names he gave.
Who stole the apples?

Puzzle 3
Alice, Brenda, Cissie, and Doreen competed for a scholarship. "What luck have you

had?" someone asked them.

Said Alice: "Cissie was top. Brenda was second.”

Said Brenda: "No, Cissie was second, and Doreen was third."

Said Cissie: "Doreen was bottom. Alice was second.”

Doreen said nothing.
Each of the three girls who replied made two assertions, of which only one was true. Who
won the scholarship? More generally, in what position did each of the four girls finish?

Puzzle 4
Four hunters, A, B, C and D, occupied a camp for seven days. (1) On days when A



hunted, B did not. (2) On days when B hunted, D also hunted, but C did not. (3) On days
when D hunted, A or B hunted. No two days were identical in who hunted and who didn't.
On how many days did D hunt, and with whom?

Okay, have you solved Puzzle 17? If not, here’s how to do it ‘with reasoning.’ (By the end
of Chapter 4 we'll have solved all four puzzles with the techniques of Boolean algebra.)
Since we are told only one of the three statements is true, then we can attack the problem
as follows: Take each one of the statements, in turn, as the true one, and reverse the other
two. if we have selected the correct true statement, then we’ll have three true statements.
Since there are only three statements in all, we only have to do this three times. For each
group of 'corrected’ three statements we can then see if what they say, collectively, makes
sense. So,

Case 1: Take (a) as true, and {b) and (c) as false. Then, with reversais, we have

(a1) box A contains the red chip;
(b1) box B contains the red chip;
(c1) box C contains the blue chip.
This is, of course, obvious nonsense as (a1) and (b1) cannot both be true.
Case 2: Take (b) as true, and (a) and (c) as false. Then, with reversals, we have
(a2) box A does not contain the red chip;
(b2) box B does not contain the red chip;
(c2) box C contains the blue chip.
Since box C has the blue chip, then the red and white chips are in boxes A and B. In
particular, one of those two boxes musf have the red chip, but (a2) and (b2) deny that.
Thus, Case 2 is also nonsense.
Case 3: Take (c) as true, and (a) and (b} as faise. Then, with reversals, we have
(a3) box A does not contain the red chip;
(b3) box B contains the red chip;
(c3) box C does not contain the blue chip.
This works. (b3) says B has the red chip. That leaves the blue and white chips for A and C.
(c3) says C does not have the blue chip, so C must have the white chip. Thus, A must have
the blue chip, which is consistent with (a3).

The author of a well-known science fiction story,4 in which the narrator is a college math

major, opens his tale with the student complaining about his courses. in particular, his class



in logic generates the lament "If it seems to make sense it isn’t mathematical logic!" By the
time you finish this book I hope you'il reject that sentiment and, instead, agree with me that
if mathematical logic is about anything, it is about 'making sense.’

Okay, have you solved the 'two mathematicians’ puzzle? If not, take a look at the final
note. >
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FIGURE 3.1.1 - Boole was in London June and July of 1864, just months before his
death. While there, he stopped-in at the famous London School of Photography at 174
Regent Street, one of the pioneers in commercial Victorian photography, and had this
full-length portrait taken,

Photo reproduced by arrangement with the Boole Library,

Special Collections and Archives, University College,

Cork, Ireland



FIGURE 3.2.1 — This photograph, taken in 1952, shows Shannon with Theseus, his
maze-solving ‘mouse’ built in 1950. The mouse was named in honor of the character
from Greek mythology who, after killing the Minotaur in the monster’s maze (the
Labyrinth), found his way back out because he had unrolled a ball of string behind him
on the way in. The mouse was moved through a 5-by-5 square, reconfigurable maze by
an electromagnet mounted on wheels positioned beneath the floor of the maze. Electric
motors powered the wheels, and the motors in turn were controlled by a relay logic
circuit (also beneath. the floor). The mouse could “explore’ the maze according to a fixed
strategy that Shannon butlt into the relay logic, ‘learning’ where the maze walls were by
bumping into them. Eventually, the mouse (that is, the relay logic) learned to run, without
bumping any wall, through the entire maze.

Photo reproduced by arrangement with the MIT Museum, Cambridge, MA



FIGURE 4.2.1 — Every element of B is an element of A



FIGURE 4.2.2 — The four general regions of two sets
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4.3.2)x+y=xUy.
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(4.3.4) 0+0=0
0+1=1
1+40=1
1+1=1.



(4.3.5)

0@ 0=0
0O 1=1
1T 0=1
1@ 1=0.



(4.4.1)
(4.4.2)
(4.4.3)
(4.4.4)
(4.4.5)
(4.4.6)
4.4.7)
(4.4.8)

(4.4.9)
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number of variables

A N A LON =

number of functions

4

16

256

65,536
4,294,967,296

1.84.1019



(45.1) Ar+Br+Cr=1,



(4.5.2) ArBrCp + ArBer + ArBer =1



(4.5.3) ArBer + ArBer =1.



(4.5.4) ArArBer + ArArBer + BrArBer +BrArBer + CrArBer
+ CrArBer =1.



(455) ArBrCp =1



(4.56) (C+G)D+T)(T+C)H+C)D+J)=0
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(4.5.7) (CD +GD + CT + GT)(TH + CH +TC + C)(D + J) -



(458) CD=0.



(459) (C+G)D+ TIT +C)(H + C) + (C + G)(D + T)(T + C)D + J)
+(C+G)D + T)(H + C)D +J) + (C + G)(T + C)(H + C)D + J)
+(D+TYT+CYH+C)D +J)=1.



(45100 C4By=0



(4511) Cq+ By =1.
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(4.5.12) BzC1 + 82(31 =1.



(4.513) CyD3+CoDg=1.
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(4.5.14) A2D4 + A2D4 =1.
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(4.5.15) ( 3201 C203 + 32610203)(A2D4 + A2D4) 1.



(4.5.16) A2543201C2D3 =1.
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(4.6.1) F=AB+AB+AB.



(46.2) F=(A+AB+ AB =B+ AB



(46.3) F=AB+A(B+B)=AB+A.



(464) F=A+B.
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FIGURE 4.6.1 — The Karnaugh map for F






(46.5) G=ABC+ABC +ABC



(466) G=AB+BC.



467) G=AC+B



(46.8) G=(A+C)B.
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FIGURE 4.6.2 — The Karnaugh map for G
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FIGURE 4.6.3 — The Karnaugh map for G
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(46.9) H=ABCD+ABCD +ABCD + ABCD + ABCD
+ (ABCD + ABCD + ABCD + ABCD).



(4.6.10) H=AC +BD
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FIGURE 4.6.4 — The Kamaugh map for H



FIGURE 5.2.1 — A hand-operated switch
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FIGURE 5.2.2 — Series means and
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FIGURE 5.2.3 — Parallel means or
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FIGURE 5.2.4 — One way to generate A and A
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FIGURE 5.2.5 — A two-lamp circuit
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(5.31) L=AB+AB.
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(5.3.2) L=AB+AB.
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FIGURE 5.4.2 — The relay logical inverter (NOT gate)
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FIGURE 5.5.1 — The diode
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FIGURE 5.5.3 — The relay inclusive-OR and AND logic gates
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FIGURE 5.5.4 — The relay NOR logic gate



FIGURE 5.5.5 — NOT, In¢lusive-OR, and AND logic gates from just
NOR gates



FIGURE 5.5.6 — Building a 3-input NOR from 2-input NORs.
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4
(621) > P(s=1.

I=1



A = {"at least one head (H) occurs”}

and
B ={"both heads occur"}.
Then,
(6.22)  P(A)=P(sq)+P(sp) + P(s3) = %
while
(6:2.3) P(B)=P(sq)= %.
Notice that

(624) P(AB)= 1



(a)
(b)
(c)
(d)

(e)

P(AB) - T

PR =2
P(B)= b

P(A|B)=nT1'l

P(B|A) = T2,



(6.2.5) P(A+B)=P(A)+ P(B) - P(AB).



(626) P(B|A)=Nab _ Nap/N _ P(AB)
a = na/N ~ "P(A)



(6.2.7)

P(A|B) =

Nab _
Np
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FIGURE 6.2.1 — The map of A + B covers AB fwice



(6.2.8) P()-\) = P(A|B)P(B) + P(A|B)P(B).



(6.29) P(B)=P(B |A)P(A) +.P(B | A)P(A).



' PXIV[1-P
(6.3.1) P(Y|X)= P(xllv(?;:m -2 L)P[(X) mJ
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(6.32) P(Y|X)= PXIN[1-PM]
(1-PP(Y) + PXIV)[1-PM ]
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(6.3.3)  PEq+Ep+-+-+E)<P(Eq)+P(Eg) +---+ P(E}).

\AF.



6.4.1) P(S1)=1-(1-p)2.
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FIGURE 6.4.1 — Two crummy relays with make contacts in parallel
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FIGURE 6.4.2 — Four crummy relays in series/parallel



i PXIN[1-PM)]
6.3.2 P(Y|X) =
(632) P(Y|X) (1-PP(Y) + PXIN[1-P(V)]




(633)  P(Eq+Eg+--+EQ)<PE)+P(Eg) +--++ P(Ey).
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(6.4.3) P(S3)=P(S3|E= 1)P(E 1)+P(S3]E O)P(E 0).



(8) PE=1)=p
(6.4.4) (b)P(E=0)=1-p

(c) P(S3 | E=0)=2p2 - p,



(64.5) P(S3|E=1)=P(AB +CD +AD + CB).
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FIGURE 6.4.3 — A bridging arrangement
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FIGURE 6.4.4 — The bridge arrangement when E=1
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(6.4.6) P(S3|E—1)—1 P(AC) - P(BD) + P(ABCD).



(64.7) P(S3|E=1)=4p2-4p3 4 p4.



(64.8) P(S3)=2p2 +2p3 - 5p% 4 2p5,
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FIGURE 6.4.5 — The Karnaugh map for P(S3 IE=1)
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FIGURE 6.4.6 - Relay E doesn't help
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FIGURE 6.5.1 - Maijority logic for improved system performance
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(7.1.1) =- [p logo(p) + (1 - pllog2(1 - P)]



n n
742 H=- 3 pjlega(). 2 pi=1.piZ0.
i=1 i=1



@4.3) C=limp_ 1952%“1“—7}— bits/unit time,



(7.1.4)  N(T)=N(T - 2) + N(T - 3) + N(T - 4).



(7.15) NM=Ka'l



(7.16) a%-a2-a-1=0.
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Figure 7.1.1 - Channel Capacity
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@47 NM=KiEDT+ K2(1 46557)T + K3(- 0.23278 +10.79255)
+Kq(-0.23278 -10.79255)T.
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001
100

1 01

(that is, 1 + 4 = 5 in decimal) in which no carry is produced in any of the bit positions, while

001
1 01

110
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FIGURE 7.2.1 — The XOR logic gate and how to build it with NORs
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Thus,
(72.1) S=AB+AB=A@B

and
(722) Co=AB.
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FIGURE 7.2.2 — The half-adder
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(7.2.3) Co=(A®B)C;+AB.



(7.24)  S=(AB +AB)C; + (A®B)C;.



(7.25) S=(A®B)C;+(A®B)C;.



(7.26) S=(AeB)aC;.
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FIGURE 7.2.3 — The full-adder (part 1)
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FIGURE 7.2.5 — Adding two, 4-bit numbers
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FIGURE 7.3.1 — A parity-generator circuit (at source)
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FIGURE 7.3.2 — A parity-checking circuit (at receiver)



(7.41) d=2t+1.



(7.4.2) S(n't)f(,?) (2) +(§ )+



(743) M<

NOEOHOEIO)



(75.1) 2K>2m+k+1.
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FIGURE 7.5.1 — Single-error correcting Hamming encoder
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FIGURE 7.5.2 — Syndrome generator (at receiver)
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FIGURE 7.5.3 — Syndrome decoder (at receiver)
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FIGURE 7.5.4 — Corrected (if necessary) message bits (at receiver)



[(A.A,C,C,B), ()]
[(A.A), (C.C,B)]
[(A.A.C,B), (C)]
[(A.C). (A,C,B)]
[(A.C.C.B), (A)]
[(A). (A,C,C,B)]
[(A.C.B), (AC)]
[(C), (A.A.C,B)]
[(C.C.B), (AA)]
[(), (A,A,C.C,B)].



FIGURE 8.2.1 — The NOR bistable latch
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FIGURE 8.2.2 — The RS latch



e t5 volts

2
lo IC‘.Q.(

._—DO_*‘ 3
oukput

FIGURE 8.3.1 — One way to generate the start signal for a digital
machine
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FIGURE 8.3.2 — Switch debouncing with the RS {atch



_—ee e e ms = = -

one C.locl‘c-
f'e.lr-ioc‘. —

FIGURE 8.3.3 — A clock signal

» kime.



S .

A e
ENABLE (= CLK) ‘{ '
J
)

R |

RS |

FIGURE 8.3.4 — The RS flip-flop
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FIGURE 8.3.5 Leading-edge detector
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FIGURE 8.3.6 — Trailing-edge detector
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FIGURE 8.3.7 — How to generate the start signal for a digital

machine



1) o Q) RO s(n)

0 0 0 01 O
1 0 1 0 1
0 1 1 0 0.1
1 1 0 1 0



Y 7 AN AR

84.1) RM-= TN Q) 4+ (ﬁﬁi Eﬂn—))

and

842 sM-=1 a™ + (?('rﬁ Q(n))_



pm oM ql+Y) rm s

0 0 0 01 0
1 0 1 0 1
0 1 0 1 0
1 1 1 0 0,1



LY L

843 RM-= pMal 4 (5(?\‘) 'Q—(Tﬁ)

and
©8.44) sM=pM a® + ( p(Ma™).



FIGURE 8.4.1 — The T flip-flop



845 RM-pM

and
846 s =p.



machine
state at clock n

W W NN ==

machine

x(m y@ z(M  stateatclock n+1
0 1 1 2
1 1 1 0
0 1 0 2
1 0 1 3
0 1 0 3
1 1 0 1
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FIGURE 8.4.2 — The D flip-flop



ot gz x aqim) a2n+1) T 1200 v Z

0 1 o 1 0 1 1 1 1
0 1 1 0 0 0 1 1 1
1 0 o 1 0 0 0 1 0
1 0 1 1 1 0 1 o 1
1 1 o 1 1 0 0 1 0
1 1 1 0 1 1 0 1 0

From this table we can write the T1 and T2 equations as

@54) T =a1® a2 XM + 1" q2(n x(n)
and

o) ~ T 2(M X 4 a1 20 x(M 41 q2™ x®

or,

852 T2 =a1® @2 + a1 az®™ x(n),
Also, the output equations are

853 Y® a1 q2® x™ (hatis, ¥ M= a1 g2 x(M
and, as the table shows by inspection,

854 zM=T2(M.




%

Ljellje

ololl |Ilc‘)

Linite-stute
machin e.

i =

—>

-
—— -

-—
T —

4 PEaJ/urp]te tha.cl

FIGURE 9.1.1 — A Turing machine
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0+2=---0101110 « - - which should give -+ - 01110 - - -
2 4+0=-+-0111010 - - - which should give « - - 01110 « -«
2 4+3=0.-0111011110 - - - which should give + -+ 01111110 < - -.
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FIGURE 9.2.1 — The state-transition diagram for a Turing machine
adder
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FIGURE 9.2.2 — Radd’s Busy Beaver Turing machine
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FIGURE 9.3.1 — Cantor’s infinite matrix of the rationals






rado.m
state=1:tape=zeros(1 ,50);location=25;shiﬂ=0;
while state>0
symbol=tape(location);
if state=—1
if symbol=0
tape(location)=1;location=location+1 :sfate=2;

else
tape(location)=1 -location=location+1 ;state=0;
end
glseif state=2
if symbol=0
tape(location)=1 ;Iocation=location-1 ;state=2;

else
tape(location)=O;Iocationslocatiom1 ;state=3;
end

else
if symbol=0
tape(location)=1 ;Iocation=location-1 ;state=3;

else
tape(location)=1 ;location=location—1 :state=1;
end
end
shift=shift+1;
end
sum(tape),shift
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FIGURE 10.5.1 — An optical illusion illustrating both state
superposition and measurement collapse



(106.4)  |ly'y=cq|1)+ca|0).
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If we represent the quantum inverter gate by the symbol N, then N ‘operating on’ |y)

should give |u,v'). That is,

(10.6.3) N|: “ }=[ =2 }
02 01

What 'operating on’ a two-element column vector gives another two-element column
vector? A 2-by-2 matrix! That is, if we write

nl €1 |.| @b c1 |_| €2
co de Co eq |
then performing the matrix multiplication gives us the two equations
acq +bcg =cCo
dcq +ecg =Cq

which, by inspection, says a=0, b= 1 and d =1, e = 0. That is, the quantum logic inverter

gate is, mathematically, the matrix

0 1
(10.6.4) N=|: - }

Our result in (10.6.4) makes sense, too, when you ask yourself the question: what
should happen to |y) if we run it through fwo quantum inverters in series? The answer
seems clear: you should get | ) back. Do we? Yes, because

e R Y N

And, in fact,

S TR

where | is the 2-by-2 identity matrix and (of coursel) 1|y) = |y).



w30 o [
e ] dcq +eco
= (acq + bcy) | 0) + (dcq + eco) | 1).

Now, let's write M' as the adjoint of M, which means MT is the conjugated transpose of
M. That is,

b* e* |

And suppose further that we require MM =1. Thatis,

R

Then,
lal?+ 1d|?=1
(10.6.5) ab*+e*d=0
h ab+de=0

1612 + |e|?2=1



(10.6.6)

and

(10.6.7)




FIGURE A1 - The resistor
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FIGURE A2 — Resistors in series (top) and in parallel (bottom)





