
The Tower of Mathematics is the Tower of Babel inverted: its voices 
grow more coherent as it rises. The image of it is based on Pieter 

Brueghel’s “Little Tower of Babel” (1554).

9781608198696 The Art of the Infinite (836h).indd   ii9781608198696 The Art of the Infinite (836h).indd   ii 04/02/2014   20:31:2404/02/2014   20:31:24



The Art of the Infi nite

6

Wunnery tooery tickery seven

Alibi crackaby ten eleven

Pin pan musky Dan

Tweedle-um twoddle-um twenty-wan

Eerie orie ourie

You are out!

This is as fascinating as it is wild, because whatever the miscon-
ceptions about the sequence of counting numbers (alibi and 
crackaby may be eight and nine, but you’ll never get seven to come 
right after tickery), the words work perfectly well in counting 
around in a circle—and it’s always the twenty-fi rst person from 
the start of the count who is out, if “you” and “are” still act as 
numerals as they did in our childhood. We can count signifi cantly 
better than rats and raccoons because we not only recognize differ-
ent magnitudes but

know how to match up separate things with the succes-
sive numbers of a sequence:

a little step, it seems, but one which will take us beyond the moon.
The fi rst few counting numbers have puzzlingly many names 

from language to language. Two, zwei, dva, and deux is bad enough, 
even without invoking the “burla” of Queensland Aboriginal or 
the Mixtec “ùù”. If you consult just English-speaking children, 
you also get “twa”, “dicotty”, “teentie”, “osie”, “meeny”, “oarie”, 
“ottie”, and who knows how many others. Why is this playful 
speciation puzzling? Because it gives very local embodiments to 
what we think of as universal and abstract.

Not only do the names of numbers vary, but, more surprisingly, how 
we picture them to ourselves. Do you think of “six” as 

or  or  or  or        ?

A friend of ours, whose art is the garden, has since childhood 
always imagined the numbers as lying on a zigzag path:
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What happens, however, if we follow Isobel’s route past 60? It 
continues into the blue on a straight line. Almost everyone lets the 
idiosyncrasies go somewhere before a hundred, as not numbers 
but Number recedes into the distance. 3 and 7, 11 and 30 will have 
distinct characters and magical properties, perhaps, for many—
but is 65,537 anyone’s lucky number? What makes mathematics so 
daunting from the very start is how its atoms accelerate away. A 
faceless milling crowd has elbowed out the kindly nursery fi gures. 
Its sheer extent and anonymity alienate our humanity, and carry 
us off (as Robert Louis Stevenson once put it) to where there is no 
habitable city for the mind of man.

We can reclaim mathematics for ourselves by going back to its 
beginnings: the number one. Different as its names may be from 
country to country or the associations it has for you and me, its 
geometric representation is unambiguous: . The notion of one—
one partridge, a pear tree, the whole—feels too comfortable to be 
anything but a sofa in the living-room of the mind.

Almost as familiar, like a tool whose handle has worn to the fi t 
of a hand, is the action of adding. We take in “1 + 1”, as a new 
whole needing a new name, so easily and quickly that we feel fool-
ish in trying to defi ne what addition is. Housman wrote:

To think that two plus two are four

And neither fi ve nor three

The heart of man has long been sore

And long ’tis like to be.

Perhaps. But the head has long been grateful for this small blessing.
With nothing more than the number one and the notion of 

adding, we are on the brink of a revelation and a mystery. Rubbing 
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with Tom Paine and make him an honorary citizen. So zero joined 
the republic of numbers, where it has stirred up trouble ever since.

Our primary mathematical experience, individually as well as 
collectively, is counting—in which zero plays no part, since counting 
always starts with one. The counting numbers (take 17 as a random 
example), parthenogenetic offspring of that solitary Adam, 1, came in 
time to be called the natural numbers, with N as their symbol. Think 
of them strolling there in that boundless garden, innocent under the 
trees. For all that we have now found a way to organize them by tens 
and hundreds, they seem at fi rst sight as much like one another as such 
offspring would have to be. Yet look closer, as the Greeks once did, to 
see the beginnings of startling patterns among them. Are they patterns 
we playfully make in the ductile material of numbers, as a sculptor 
prods and pinches shapes from clay? Or patterns only laid bare by such 
probing, as Michelangelo thought of the statue which waited in the 
stone? Of all the arts, mathematics most puts into question the distinc-
tion between creation and discovery.

If you happened to picture “six” this way , its pleasing

triangular shape might have led you to wonder what other natural

numbers were triangular too. Add one more row of dots— 

so 10 is triangular. Or take a row away—  : 3 is triangular 
too. 3, 6, 10 . . . 15 would be next, by adding on a row of fi ve dots 
to the triangular 10; then comes 21. We might even be tempted to 
push the pattern back to one, , as if it were a triangular number by 
default (extending the franchise again).

Here are the fi rst six triangular numbers:

      
1    3        6   10   15   21
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Each is bigger than the previous one by its bottom row, which 
is the next natural number. This pattern clearly undulates 
endlessly on.

Idly messing about—the way so many insights burst conven-
tional bounds—you might ask what other shapes numbers could 
come in: squares, for example. 4 is a square number:  and the 
next would be

9 , then 16  .

Again, by courtesy, we could extend this sequence backward to 
1: . The fi rst six square numbers, each gotten by adding a right 
angle of dots to the last,

are 1, 4, 9, 16, 25, 36. Another endless rhythm in this landscape.
But isn’t all this messing about indeed idle? What light does it 

shed on the nature of things, what use could it possibly be?
Light precedes use, as Sir Francis Bacon once pointed out. Think 

yourself into the mind of that nameless mathematician who long 
ago made triangular and square patterns of dots in the sand and 
felt the stirrings of an artist’s certainty that there must be a connec-
tion between them:
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If there was, it was probably well hidden. Perhaps he recalled what 
the Greek philosopher Heraclitus had said: “A hidden connection 
is stronger than one we can see.” Hidden how? Poking his holes 
again in the sand, looking at them from one angle and another, he 
suddenly saw:

each of these square numbers was the sum of two triangular 
ones! Then the leap from seeing with the outer to the inner eye, 
which is the leap of mathematics to the infi nite: this must always 
be so.

Our insight sharpens: the second square number is the sum of 
the fi rst two triangular numbers; the third square of the second 
and third triangulars, and so on. You might feel the need now for a 
more graceful vessel in which to carry this insight—the need for 
symbols—and make up these:

 =  +      =  + 

so        =  + 

where that “always” is stored in the letter “n” for “any number.”
By itself this is a dazzling sliver of the universal light, and its 

discovery a model of how mathematics happens: a faith in pattern, 
a taste for experiment, an easiness with delay, and a readiness to 
see askew. How many directions now this insight may carry you 
off in: toward other polygonal shapes such as pentagons and hexa-
gons, toward solid structures of pyramids and cubes, or to new 
ways of dividing up the arrays.

As for utility, what if you wanted to add all the natural 
numbers from 1 to 7, for example, without the tedium of adding 
up each and every one? Well, that sum you want is a triangular 
number:
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We might try writing  =  –  and work our way back-
ward—but this will get us into an ugly tangle—and if it isn’t beau-
tiful it isn’t mathematics. Faith in pattern and easiness with delay: 
we want to look at it somehow differently, with our discovery of 
page 13 tantalizingly in mind. A taste for experiment and a readi-
ness to see askew: well, that triangle is part of a square in having a 
right angle at its top—what if we tilt it over and put the right angle 
on the ground:

Why? Just messing about again, to make the pattern look square-
like; but this feels uncomfortable, incomplete—it wants to be fi lled 
out (perhaps another ingredient in the mix of doing mathematics 
is a twitchiness about asymmetries).

If we complete it to a square, we’re back to what proved useless 
before. Well, what about pasting its mirror image to it, this way?
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counting games, years of discretion approach with the shadows of 
commerce and exchange. I had three marbles, then lost two to you, 
and now I have one. I lose that one and am left with none, so I 
borrow one from a friend and proceed to lose that too, hence owing 
him one. How many have I? Even recognizing that I had one marble 
after giving up two is scaly, a snake in our garden, the presage of loss.

How are we even to picture the negative numbers—by dots that 
aren’t there?

Yesterday upon the stair

I met a man who wasn’t there.

He wasn’t there again today—

I wish that man would go away.

But the negative numbers won’t go away: Northerners are inti-
mately familiar with them, thanks to thermometers, and all of us, 
thanks to debt.

Perhaps by their works shall you know them, through seeing the 
palpable effects of subtracting. Look again at our triumphant 
discovery of what the fi rst n natural numbers added up to. If we 
subtract from these numbers all the evens, what sum are we left 
with—what is the sum of the odds?

1 + 3 = 4
1 + 3 + 5 = 9
1 + 3 + 5 + 7 = 16
1 + 3 + 5 + 7 + 9 = 25

It looks as if it might be the square of how many odd numbers we are 
adding. And here is a wonderful confi rmation of this, in the same 
visual style as our last one—another piece of inspired invention. When 
we add right angles of dots to the previous ones, as we did on page 13,

    
 1 1 + 3 1 + 3 + 5 1 + 3 + 5 + 7.
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zero and the negatives have all the marks of human artifi ce: deftness, 
ambiguity, understatement. If you like, you can preserve the 
Kroneckerian feeling of the difference between positives and negatives 
by picturing our present awareness as the knife-edge between endless 
discovery ahead and equally endless invention behind.

 

From Ratios to Rationals
You pretty much know where you are with the integers. There may be 
profound patterns woven in their fence-post-like procession over the 
horizon, but they mark out time and space, before and behind, with 
comforting regularity. Addition and multiplication act on them as 
they should—or almost: (–6) · (–4) = 24: a negative times a negative 
turns out, disconcertingly, to be positive. Why this should—why this 
must—be so we will prove to your utter satisfaction in Chapter Three. 
Otherwise, all is for the best in this best of all possible worlds.

Exhilarated by its widened conception of number, mind looks for 
new lands to colonize and sees an untamed multitude at hand. For from 
the moment that someone wanted to trade an ox for twenty-four fi ne 
loincloths, or a chicken for 240 cowrie shells, making sense of ratios 
became important. You want to scale up this 2 by 4 wooden beam to 6 
by—what? Three of your silver shekels are worth 15 of your neighbor’s 
tin mina: what then should he give you for fi ve silver shekels?

The Greeks found remarkable properties of these ratios and 
subtle ways of demonstrating them. If an architect wondered what 
length bore the same relation to a length of 12 units that 4 bears to 
7, a trip with his local geometer down to the beach would have him 
drawing a line in the sand 4 units long; and at any angle to that, 
another of 7 units, from the same starting-point, A:
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the urge for completion would lead them both to draw the third 
side, BC, of their nascent triangle. But now the geometer continues 
the lines AB and AC onward:

and marks a point D on AB’s extension so that AD is 12 units long:

ingenuity and an intimacy with similar triangles now leads him to 
draw from D a line parallel to BC, meeting AC at E:

AE will be in the same ratio to 12 as 4 is to 7.
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At no time, you notice, was 4
7  called a number, nor was a fraction 

like 
x

12  involved; no one solved 
4
7

= = 
x

12  for x to fi nd x equal to 48
7 .

Those expressions couldn’t be numbers to the early Greeks, for 
whom magnitudes were one thing, but their ratios another. Both 
were of vital importance to Pythagoras and his followers, who in 
southern Italy and Greece from the fi fth century b.c. onward 
revealed to their initiates the deep secret that numbers are the 
origin of all things, and that their ratios made the harmonies of 
the world and its music. For if a plucked string gives middle C, 
then plucking a string half its length would give the octave above 
middle C.  A string 2

3  as long as the original C string would give 
you its fi fth, G; 3

4  as long, its fourth, F—those intervals that are the 
foundation of our scales. These ratios were propagated through 
the universe, making the accords that are the music of the spheres 
(we don’t hear it because its sound is in our ears from birth). But 
2
3  or 3

4  couldn’t possibly be numbers, because numbers arose from 
the unit, and the unit was an indivisible whole.

How nightmarish it would have been for a Pythagorean to think 
of that whole fractured into fractions. It would mean that how 
things stood to one another—their ratios—and not the things 
themselves were ultimately real: and they could no more believe 
this than we would think that adjectives and adverbs rather than 
nouns were primary. That would have led to a world of fl ickering 
changes, of fading accords and passing dissonances, of qualities 
heaped on qualities, where shadowy intimations of what had been 
and what would be tunneled like vortices through a watery present 
you never stepped in twice.

If Greek philosophers and mathematicians did not have frac-
tions, it seems their merchants did—picked up, perhaps, in their 
travels among the Egyptians, for whom fractions (though only 
with 1 in their numerators) dwelt under the hawklike eye of Horus.
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Pythagorean attunements. Yet the tragic irony that runs beneath 
all Greek thought burst out most catastrophically here, for the 
wedding of insight to proof in Pythagoras’s prized theorem—that 
the square on a right triangle’s hypotenuse equals in area that of 
the sum of squares on the two sides

a2 + b2 = c2

had a lame patricide as its offspring.
We have only the faintest echoes of the story, in late and unreli-

able sources at that, since secrecy obsessed the Pythagoreans gener-
ally, but at this moment most of all. A Pythagorean named Hippasus, 
they say, from Metapontum, used that great theorem to prove there 
was a magnitude which, when compared to the unit length, couldn’t 
make a ratio of two natural numbers. But if this were so, where 
would the music of the spheres and the harmony of things be? 
Where the whole, the tetractys, the moral foundations of life?

Yet Hippasus’s proof had an iron certainty to it. Put in modern 
terms, a right triangle both of whose legs are of length 1 has a 
hypotenuse of length h, which the theorem lets us calculate.
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God is dead. It was the secret deep within the nested Pythagorean 
secrets.

There it grew, for any natural multiple of 2  must be irrational 
also. If 7 2 , for example, were rational—if 7 2 = p

q —then 2  would 
equal 

p
7q , a rational again. Hippasus from Hades calls out that this 

cannot be. The growth metastatized: any rational whatever (except, of 
course, 0) times 2  will be irrational, since if 

a
b

 
 
 ⋅ 2 =

p
q , then 2 = bp

aq ,
which is a ratio of natural numbers. The tight line of the rationals 
was now peppered with these irrational offspring of 2 .

The darkness grew only deeper: 3 turned out to be irrational 
also (the proof is very like Hippasus’s, but with a threefold classi-
fi cation of naturals instead of the twofold distinction we had for 

2 ). So, therefore, were all its numerous progeny. Then 5  
followed suit, and 6 , and 7 . In fact if a natural number wasn’t 
a square like those we saw on page 12, its square root had to be 
irrational. Swarms of irrationals were now loose in the land, with 
plagues to follow: cube roots of numbers not perfect cubes are 
irrational too, and fourth roots of numbers not perfect fourths 
(the fourth root, for example, of 81, 4 81 , is 3, but 4 80  and 4 82  
are irrational)—and so terrifyingly on.

The terror lies in what seems our inability to accommodate all 
these invaders. Remember how packed the line of rational numbers 
was to begin with—as densely settled as the fabled midwestern 
town whose built-up zones had a house between any pair of 
houses. The rationals are dense, as we saw before, with a rational 
(their average, for example) between any two rationals. Where 
then could all those irrationals possibly fi t?

If you claim they aren’t on the number line at all, gently lower 
the hypotenuse of the triangle we began with, as if it were the 
boom of a crane, until it rests on the line:
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Its tip touches the line at a point somewhere between 1 and 2 
(between 1.4 and 1.5 if you care to be more exact, or even more 
precisely, between 1.41 and 1.42), so this point has the irrational 
number 2  as its address.

We will never be at ease with this, but at least we can try to grasp 
the situation in another way: through decimals. If you turn a 
rational number into a decimal, that decimal will either peter out 
eventually to nothing but zeroes ( 1

2 =0.5000 . . . —or we could put 
a bar above the 0 to show it repeats forever: 0.50 ) or it will begin to 
repeat. So 1

3=0.333 . . . that is, 0.3 , and 1
7  = 0.142857142857142857 

. . . that is, 0.142857 . Why must this be? Because you get the decimal 
by dividing the denominator into the numerator, and at each step 
you get a remainder. If you are dividing by seven, the only possible 
remainders are 0, 1, 2, 3, 4, 5, and 6 (if you get a larger remainder, 
you could have divided 7 in one more time). How many different 
remainders are there? Seven: there can’t be any more. This means 
that after a while the remainders start recycling:

0.14285711
7 1.0000000000  . . .

7
=

–7
33 0
–28

32 0
–14

36 0
–56

34 0
–35

35 0
–49

31 0
–7
33

and we see the cycle beginning again.
Clearly the very nature of division forces the decimal represen-

tation of a fraction to repeat. So if a decimal doesn’t repeat, it can’t 
represent a rational number!
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We bring this alien slowly to earth by asking it to engage with 
the terrestrials. i + i is 2i, and 13i means i added to itself 13 times. 
13 + i is just . . . 13 + i: the alien mixes with the natives on formal 
terms, keeping his distance. In that remoteness he generates further 
imaginaries, as I generated the natural numbers. On a trajectory of 
their own they range and play, as addition, subtraction, multipli-
cation, and division draw them endlessly out:

But just in the midst of these eccentric, playful creatures is 
0i, and that is 0: a real number! It is where the trajectory of i 
strikes the real line, so that we needn’t picture these two 
progressions as parallel or skew, but intersecting—and there-
fore (so much created out of nothing and imagination) 
producing a plane of numbers where once a thin line had been.

The Complex Plane
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drew on page 33. Were there Pythagoreans today, these nests might 
serve instead of the tetractys as the fount and root of ever-fl owing 
nature:

The Talisman of the New Pythagoreans
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very hard to answer. A twelfth-century Indian proof of the 
Pythagorean Theorem consists of no more than two puzzle-like 
diagrams with the single explanatory word: “Look!” And below is 
a thoroughly wordless early proof from China.*

And here indeed, looking leads to seeing. Is this because an exem-
plar rather than an example—a particular case whose particularity 
doesn’t matter—wakens our sense of analogy and the ability to 
recognize pattern?

In order to savor once more this all too fugitive experience, here 
is a very different way of seeing that

1 2 3+ + +  . . . 
n (n 1)n

2
⋅ +

+ = .

Again we choose an example—say, 10. You look at the sum

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10

and ingrained habits of reading from left to right, as well as being 
systematic, lead you to starting: 1 plus 2 is 3, and 3 makes 6, and 4 
makes 10 . . . But what if you look at it differently (and the secret 

* These diagrams given in silence have the air of a rite of passage. The initiate 

must fi rst remark that since the two squares are the same size, their areas are 

equal; then, that the four triangles in each, although differently situated, are all 

identical—hence the area remaining in each square after removing them is the 

same. But that area is made up in the fi rst diagram of two squares, one on each of 

the triangle’s legs; and in the second, of a square on its hypotenuse—so that the 

sum of the areas of the two squares equals the area of the third.
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of all mathematical invention is looking from an unusual angle)—
what if you add in pairs as follows:

1 + 10 = 11, 2 + 9 = 11, 3 + 8 = 11—in fact, all these pairs will add 
up to 11! And how many pairs are there? 5—that is, half of 10. So

,
101 2 3 4 5 6 7 8 9 10 (11)
2

nor (n 1)
2

 + + + + + + + + + = ⋅ 
 

  ⋅ + 
 

.

Some people relish the geometric approach, some the symbolic. 
This tells you at once that personality plays as central a role in 
mathematics as in any of the arts. Proofs—those minimalist struc-
tures that end up on display in glass cases—come from people 
mulling things over in strikingly different ways, with different 
leapings and lingerings. But is it always from the same premises 
that we explore? Is there some sort of common sense that is to 
reason what Jung’s collective unconscious used to be to the psyche? 
One of these approaches, or some third, must have been in the 
mind of the ten-year-old Gauss—the Mozart of mathematics—
when, in his fi rst arithmetic class, he so startled his teacher. It was 
1787 and Herr Büttner was in the habit of handing out brutally 
long sums like these, which the children had to labor over. When 
each one fi nished he added his slate to the pile growing on the 
teacher’s desk. The morning might well be over before all had 
fi nished. But Gauss no sooner heard the problem than he wrote a 
single number on his slate and banged it down. “Ligget se’!” he 
said, in his Braunschweig accent: “There it lies!” And there it lay, 
the only correct answer in the lot.

Gauss may have had better access to his intuition than most of 
us do, but isn’t it clear that what is common to us all is this very 
intuition? Yet ever since the earth turned out not to be fl at, our 
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trust in the obvious has been weakened. Insight and intuition were 
knocked off their pins by Hippasus: his irrational shook the Greeks 
more profoundly than the eruption of irrational passions through 
the sunlit surface of life.

Fear begets law. The jurist in the soul demands system to hem in 
the disorder that the irrationals let loose. The remedy that Eudoxus, 
one of Plato’s followers, came up with in the fourth century b.c. 
was to build up even the most banal certainty on an armature of 
proof. This meant deducing results by pure logic from as trim and 
tight a foundation as he could fi nd. These foundations were 
“axioms,” like the familiar “equals added to equals make equals”—
statements so weighty and worthy of belief that we don’t even 
know how to doubt them. Their evolution is curious, because we 
are such inveterate doubters.

Plato’s theory of recollection explained why we simply recog-
nize truths for what they are: the soul had seen them directly in its 
abstracter state, among the eternal Ideas, before we were born. 
Aristotle hedged these bets: some fi rst principles were common to 
all the sciences, some were justifi ed by the consequences they 
begot. All came from generalizing what we saw in the physical 
world. The Stoic philosophers a century later spoke of a “recogniz-
able impression” which gave us our basic certainties. Our appre-
hension fi rst encounters an image as an open hand would an 
object; then begins to close around it in assent; next grasps it 
tightly—the fi t of hand to object was “recognition”—and fi nally 
(here the Stoic Zeno, teaching his students, would cap his clenched 
right fi st with his left hand) holds it as knowledge.

When the Gnostics fastened onto the Pythagorean pairing of 
darkness and light, putting it at the heart of everything, a belief 
began to grow in something on a different plane from our animal 
instincts: an inner or natural light which enhaloed the truth. By 
the time of St. Augustine and later St. Thomas Aquinas, the two 
strands of recognizable impression and natural light twined 
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around each other to redefi ne “intuition,” which gave us immedi-
ate truth.

Immediate: that was the test; and where but in France, so 
charmed by élan, would immediacy be an irresistible force? Where 
but in France would the graceful sweep of articulate thought guar-
antee its validity? On November 10, 1619, the young Descartes had 
a dream in the midst of the Lowland Wars, where he served with 
Prince Maurice of Orange. In it he saw that authority counted for 
nothing in mathematics, whose methods were able to fi nd unim-
peachable truths. When he wrote up the principles of this method 
nine years later, in Règles pour la direction de l’esprit, he said that in 
order to gain knowledge we must begin with what we can intuit 
clearly and immediately, pass one by one through all the relevant 
stages in a continuous and uninterrupted movement of thought, 
to see in the end the truth directly and transparently.

This trumpet call echoed as 
resonantly through France as 
playing up and playing the 
game did through England. 
You hear it in 1810, when the 
French geometer Gergonne 
wrote that axioms were theo-
rems whose mere statement 
sufficed for recognizing their 
truth. You hear it at the end of 
the nineteenth century in 
Rimbaud’s Une saison en 
enfer: “We are dedicated to 
the discovery of divine light. 
All the filthy memories are 
disappearing . . . I will be 
allowed to possess the truth 
in a single soul and body.” 

(There is also an echo here of the Stoic and Cartesian concern 
for purity, lest even intuition fall into error.)

But what if metaphors of light or appeals to something as fl ighty 
as imagination struck you as too fl imsy a framework for the tower 
of mathematics? A different prospect, from the world rather than 

René Descartes (1596–1650), 
whose interest in mathematics 
was sparked by a problem he 

saw posted on a wall in 
Holland in 1618.
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these laws hold for the natural numbers, the impulse of the time 
was to carry them through to the outermost circles of the mathe-
matical empire, past integers and rationals, as satraps once carried 
the laws made in Persepolis to every Persian province.

You fi nd these axioms stated with growing sophistication during 
the eighteenth and nineteenth centuries. In Germany, while Georg 
Ohm in the 1820s was drafting his law that united electrical volt-
age, current, and resistance, his younger brother Martin was 
making the laws for weaving the numbers together through the 
operations on them, such as the Associative Law, which declared 
that regrouping couldn’t change a sum or a product:

a + (b + c) = (a + b) + c

a · (b · c) = (a · b) · c .

It was all very well and wonderfully concise to express these laws 
about numbers with letters, but how could we guarantee in a 
republic rather than a monarchy that the letters could stand for any 
kind of number at all? In England a man named George Peacock, 
who seemed able to believe six impossible things before breakfast, 
stated Peacock’s Principle of Permanence in 1833: “Whatever form 
is algebraically equivalent to another form expressed in general 

symbols, must continue to be 
equivalent, whatever those 
symbols denote.” So if an oper-
ation made sense for the natural 
numbers, it must—by Peacock’s 
Principle—make sense for any 
kind of number. His Principle 
never stooped to ask why this 
should be so, and in fact (as we 
shall see on page 114), led to 
nonsense. Hidden in the neutral 
word “form,” however, was the 
embryo of an abstractly formal-
ist point of view that would 
utterly shift our understanding 
of mathematics.George Peacock (1791–1858)
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to one another in specifi c ways; hence, so must anything slotted 
into them.

To take these laws in all at once, in a continuous sweep as 
Descartes would have us do, here are the unbroken Tablets of the 
Law, as delivered to us in 1893 by the equally abstract Heinrich 
Weber (a man about whom much is, but little more need be, 
known). They are expressed, only for convenience, in terms of 
numbers (a pure Formalist would have said: “If a, b, and c are 
elements of the fi eld,” and so on).

The Axioms for a Field
if a, b, and c are numbers, then

Under Addition Under Multiplication
A0 a + b is a number Closure M0 a · b is a number
A1 a + (b + c) = (a + b) + c Associativity M1 a · (b · c) = (a · b) · c
A2 a + b = b + a Commutivity M2 a · b = b · a
A3 there is a number, 0, Identity M3 there is a number, 1,

such that a + 0 = such that a · 1 = a; and
1 ≠ 0.

A4 for any number a there Inverse M4 for any number a,

is a number, –a, such except 0, there is

that a + (–a) = 0 a number, 1

a
, such

that  a ·
1

a
 = 1

D Distributivity:  a · (b + c) = a · b + a · c.

You may feel a need now for the axioms of subtraction and 
division—but see with what Spartan economy they have been 
included. Subtraction isn’t a primary operation but is the inverse 
of addition; division, similarly, is just the inverse of multiplica-
tion. Their respective axioms let you balance the number line 
around 0 or 1.

We can also answer what seemed a merely rhetorical question 
in Chapter One. We asked on page 10: “multiplication is just 
sophisticated addition, isn’t it?” The answer is: No. Certainly 3 · 4 
means 4 added to itself 3 times, or 3 added to itself 4 times; but 
what does 3 2⋅  mean? Three copies of 2  added together. The 
commutative law helps you make some sense of “ 2  copies of 3 
added together,” but how could you explain at all in terms of 
addition what 7 ⋅ ⋅ 2  means? Addition and multiplication are 
equally fundamental operations—Romulus and Remus (and 
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commonly suckled by the Distributive Axiom)—but ultimately 
independent.

You might complain: “Where have you gotten this 2  and that 
7  from? Since a fi eld axiom gave us 1, another axiom produces 2, 

3, and all the naturals, another their negatives, and a third the 
rationals—but nothing on the list accounts for the irrationals.” 
And you are right so to complain: we need some way to assert their 
existence, and merely invoking different kinds of roots won’t do, 
since as you saw on page 28–29 we can make irrationals in so many 
other ways.

Much energy and imagination, much argument and ink were 
spent on shaping something adequate and elegant enough to 
round out the table. In the background moved Schumann-like 
shadows that separated appearance ever further from being: for it 
is a trait of romantic enterprises that proxies beget proxies and 
what was stood in for turns out itself to have been a stand-in. So 
numbers gradually came to be thought of as secondary phenom-
ena and sets emerged as fundamental. These, at last, had no ante-
cedent and needed no defi nition. Unlike different sorts of numbers, 
we grasped sets at once and might call them “collections” or 
picture them as bags containing distinct objects, but this was mere 
paraphrase of what we knew without knowing (they weren’t 
defi ned in terms of numbers or anything else, but now numbers 
could be defi ned in terms of them). Sets and their doings put 

bedrock under what had been 
shifting sands.

As early as 1835 the Irish 
mathematician William Rowan 
Hamilton—chaotic in life, 
discoverer of unguessed-at 
order in thought—came up 
with the idea that an irrational 
could be pinned down by divid-
ing the rational numbers into 
distinct sets; and this idea 
Richard Dedekind brought to 
fulfi llment later: he noted the 
date carefully in his diary 

Richard Dedekind 
(1831–1916)
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and the y’s turn out to be roughly 1.38 and –2.38. This sketch, fi lled 
in by yet further descendants of the axioms, shows that the infi nite 
number of solutions lie on a “cubic curve,” which when plotted on 
the coordinate plane has this curiously disjoint shape:

There you see all the real solutions to our equation.

But the Garden of Eden is famous for its snake, and the snake is 
the desire for more precise knowledge. Are there specifi c pairs of 
integers, those uniquely fundamental, ancient numbers, which 
satisfy this equation? Looked at again, you see that it can be rewrit-
ten as

y · (y + 1) = (x – 1) · x · (x + 1),

so that with integers in mind we are asking: are there any numbers 
which can be expressed as a product of two consecutive integers (y 
and y + 1) and at the same time as a product of three consecutive 
integers (x – 1, x, and x + 1)? Not only has the question developed 
a profounder character when posed in terms of integers, but 
strangely enough, the axioms for the reals can’t tell us enough to 
answer it! It isn’t even clear, at fi rst glance, how many integral solu-
tions there are.

And yet, this isn’t so strange: the axioms describe (or prescribe) 
the general life of the reals, not the specifi c mores of those living in 
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knocking over the fi rst domino). Then show that if the statement is 
true for any natural number, it must also be true for the next one 
(that’s the equivalent of checking that the dominoes are close 
enough together to communicate the initial impulse to all).

It is this second step that sets the mind’s teeth on edge, since it 
looks as if we were assuming what we wanted to prove. Not so: we 
assume only that our statement is true for some number n, and 
then using that assumption, strive to show it must be true for the 
next, n + 1. If we succeed, then since the statement was proved to 
be true for 1, it must also be true for 2; but true for 2 must mean it 
is true for 3; and so 4; and therefore 5—ad infi nitum. This is seeing 
the world in two grains of sand.

An example will help. If you like, you may then adopt medical 
school practice in mastering an operation: watch one, do one, 
teach one—a kind of human induction.

Here is the proof by induction of our already secure conviction 
that

1 2 3+ + +  . . . 
n (n 1)n

2
⋅ +

+ = .

First we establish that the claim is true for n = 1. Yes,

1 21
2
⋅

= .

Now assume it is true for any natural number—call it “a” for 
“any.” We’re assuming, that is, that

1 2 3+ + +  . . . 
a (a 1)a

2
⋅ +

+ = .
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successor (n and n + 1) together: “the empty form,” as it was called 
by a troubling fi gure of twentieth-century mathematics, the 
Dutchman L. E. J. Brouwer. For him, this is the form that remains 
when all the color is bleached from Before and After: the form of 
Induction that comes from recognizing that 1 + 1 is a new whole 
(Brouwer calls it “two-ity”).

Defi nitions like that about Dedekind Cuts might be hit on at a 
time and in a place, but we tend to think of methods (and certainly 
one this abstract) as timelessly there: part of our make-up. So in 
hefting a neolithic hand-ax and feeling it slip easily into your grasp, 
you think: “Of course—they made and used tools then as we do 
now.” Patterns of use are immemorial. Yet induction too was 
invented by an embodied someone, not a fi gure as abstract as the 
empty form he dealt with. Francesco Maurolico was a Benedictine 
monk in sixteenth-century Sicily. Well, you think, the contempla-
tive life would suit such abstract thoughts. Not a bit of it. He was 
head of the Mint; he was in charge of the fortifi cations at Messina; 
he devised various ways for measuring the circumference of the 
earth. He studied music, optics, magnetism, and the varieties of 
Sicilian fi sh; he successfully predicted for John of Austria what the 
weather would be like on the day of the Battle of Lepanto; he wrote 
a history of Sicily; he fi rst observed the supernova that Tycho 

The moon, aged fourteen 

days and one hour, from 

a photograph made 

through a telescope on 

October 27, 1890. The 

crater Maurolicus is in 

the upper-left quadrant, 

below Tycho. If this orien-

tation bothers you, it isn’t 

that the moon has turned 

over in the course of a 

century, but that the tele-

scope lens inverted the 

image.
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that for all they invent their paths, the landscape through which 
those paths wander is out there, independent of them, its granite 
truths indifferent to their climbing. Brouwer turned away from 
such a view in disgust. These truths, he said, are “fascinating by 
their immovability but horrifying by their lifelessness, like stones 
from barren mountains of disconsolate infi nity.”

Instead, he saw mathematics as rooted in the mathematician’s 
life and mind, which held the monopoly on certainty. Experience, 
axioms, logic itself had nothing to do with it, but intuition 
proceeded from primordial elements to a free and limitless unfold-
ing. He dismissed any connection of intuition to the old Gnostic 
image of an inner light, or to any sort of Collective Mind: it was 
the individual mind that mattered—in fact, Brouwer’s mind.

When he enrolled at the University of Amsterdam at sixteen, in 
1897, he found himself surrounded by people who couldn’t under-
stand him and whom he couldn’t stand. He made solitary pilgrim-
ages to Italy, walking there and back in his large, dark cloak. He 
retreated again and again to his thatched hut in the forest, far from 
the world’s motley plurality, to think mathematics directly, with 
eyes closed. For this was a game played in silence, as Brouwer’s 
follower Hermann Weyl later put it. What the mind’s eye saw were 
constructions fi tting together. How reminiscent this is not only of 
the Stoic hand fi tting the concept it grasped but also of the ancient 
Greek philosopher Xenophanes, 
who wrote that it wasn’t fi tting 
for God to move, but “without 
toil he shakes all things by the 
thought of his mind.”

By 1905 Brouwer realized 
that causal thinking fell into 
mere low cunning and
was fundamentally immoral. 
Human nature was the real 
villain: mankind was like a bird 
arrogantly gulping up its own 
nest, as the Dutch had inter-
fered with mother earth, 

L. E. J. Brouwer (1881–1966). 
Like Descartes and Gauss, he 
had his best insights in bed.
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in the foundations themselves. 
The rot was everywhere. Doubts 
increased about Euclidean 
geometry’s claim to the throne, 
with the pretenders from 
France, Russia, Hungary, and 
Germany brandishing their 
credentials. For each pictured 
space differently (Euclid’s 
surfaces were fl at, the others’ 
differently curved), and noth-
ing about them revealed which 
was the correct portrait of 
actual space. And there was the 
infi nite. How could we, for 
example, accept Dedekind’s 
claim that the irrationals really 
existed when, like anything in 
existence, they would have to 
take shape in fi nite time—yet 
lack of a pattern meant having to work out each of their infi nitely 
many decimal places? Besides, his cuts required treating the sets 
that defi ned them as already completed infi nities.

It would have been folly to beg these questions by shifting the 
burden onto some other subject, as if mathematics were descrip-
tive of the world so that physics, say, or chemistry or the physiol-
ogy of the brain would be ultimately responsible for its axioms—
and in need therefore of axioms in its turn. Nor could doubting 
simply be dismissed: it was as necessary a component of the lust to 
know as aggression is of the sexual drive, though equally destruc-
tive in isolation.

But what about going back to the beginning of mathematics 
and revisiting and revising the Pythagorean vision? The harmony 
there could be rethought in terms of a harmony among the axioms. 
If they were consistent with one another, so that no paradox could 
follow from their workings, a rounded body of connections would 
grow musically from them. And if such axioms were also 
complete—suffi cient, that is, for deciding the truth of every 

David Hilbert (1862–1943). 
From a set of postcards of the 

Mathematics Department sold 
by the University of Göttingen to 

tourists.
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Euclid wants to prove that there is no last prime. He does this by 
showing that no matter how many primes you have, you are forced 
to produce another. Multiply together all the primes you can think 
of in order, stopping at some prime p, and call the product of them 
all n:

2 · 3 · 5 · 7 · 11 · 13 · . . . · p = n .

Clearly, every single one of these primes divides n.
But if we have n, we must also have n + 1. This seriously large 

number is very much greater than any prime in the collection, but 
it can’t be divided by any of the primes from 2 to p, since division 
by any of them would leave a remainder of 1.

You would like to conclude now, with glee, that n + 1 must 
therefore be prime—but we have to attend fi rst to a small point of 
order. n + 1 might not have any 
of the primes from 2 to p as a 
factor, yet it might still be 
composite if it had a prime 
factor q somewhere in the great 
gulf between p and n + 1. Well 
and good: then q would be the 
new prime.

This fl ash of a proof lights 
up the infi nite vista of natural 
numbers enough for us to see 
that the primes in their niches 
are stationed endlessly there. 
Its beauty lies not only in the 
beam’s pure light, but in 
achieving so much with so 
little.

The twentieth-century mathe-
matician Paul Erdos often 
spoke of “The Book”: the 
book, he meant, in which God 
keeps all the most beautiful 
proofs. “You don’t have to 

Erdos at eight. The book in 
his hand is most likely not yet 

The Book.
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believe in God,” said Erdos, “but you do have to believe in The 
Book.” Everyone has his own edition of this book, but Euclid’s 
proof of the infinitude of primes is likely to be in them all.

After such a breakthrough you would expect hordes of results 
about the primes to start pouring in. We know that there are infi -
nitely many multiples of 3, and if asked for a formula which 
would give us any particular one, such as the eighteenth, could do 
so with ease (54), by way of the expression 3n. Yet even this we still 
can’t do for the primes. A clever Greek named Eratosthenes, in 
the third century b.c., did make use of such patterns to sieve out 
the primes in a purely mechanical way—not by a formula but 
from what all formulas like 3n left behind. This is the way it 
worked.

Write out the natural numbers from 2 on for as long as you like, 
then cross out the multiples of 2, then of 3, then of 5—but leave 2, 
3, and 5 themselves standing. The next number you come to has to 
be a prime, so leave it in place but cross out all its multiples, and 
repeat the process. What you are left with will be just the primes 
scattered through your original table.

Before

During
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After

Ingenious? Yes. A work of genius? No. Eratosthenes seems to 
have been the fi rst person for whom that English put-down was 
used, “a Beta mind.” His device would allow slaves then and 
computers now to spell out the primes, but without any insight 
into their structure—without even any need to know multiplica-
tion tables. Repeatedly counting up to three, up to fi ve, up to seven, 
and so on suffi ces, and isn’t to be despised: you will see in Chapter 
Nine how counting alone will open windows on a landscape more 
dramatic than any in fantasy fi ction.

An enormous number of primes has been amassed since 
Eratosthenes’s day, and our casual statistics on page 76 seem to 
show them dwindling away the farther along we go—yet now we 
can add: without ever disappearing. Perhaps if you laid out regular 
intervals you would fi nd steadily fewer in each, like settlers in the 
fi rst westward scatter past the Appalachians. To test this, let’s look 
by hundreds at the stretch from 1 to 1000:

 Between The Number of Primes Is

 1 and 100 25
 100 and 200 21
 200 and 300 16
 300 and 400 16
 400 and 500 17
 500 and 600 14
 600 and 700 16
 700 and 800 14
 800 and 900 15
 900 and 1000 14
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Nine how counting alone will open windows on a landscape more 
dramatic than any in fantasy fi ction.

An enormous number of primes has been amassed since 
Eratosthenes’s day, and our casual statistics on page 76 seem to 
show them dwindling away the farther along we go—yet now we 
can add: without ever disappearing. Perhaps if you laid out regular 
intervals you would fi nd steadily fewer in each, like settlers in the 
fi rst westward scatter past the Appalachians. To test this, let’s look 
by hundreds at the stretch from 1 to 1000:

 Between The Number of Primes Is

 1 and 100 25
 100 and 200 21
 200 and 300 16
 300 and 400 16
 400 and 500 17
 500 and 600 14
 600 and 700 16
 700 and 800 14
 800 and 900 15
 900 and 1000 14
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This is faintly disquieting: the number of primes bumps down and up 
as it declines. Perhaps it will even out as we move much farther along:

 Between The Number of Primes Is

 1,000,000 and 1,000,100 6
 1,000,100 and 1,000,200 10
 1,000,200 and 1,000,300 8
 1,000,300 and 1,000,400 8
 1,000,400 and 1,000,500 7
 1,000,500 and 1,000,600 7
 1,000,600 and 1,000,700 10
 1,000,700 and 1,000,800 5
 1,000,800 and 1,000,900 6
 1,000,900 and 1,001,000 8

Curiouser and curiouser. As bumpy as before, but at least the 
numbers are consistently lower. If we move up to the thousand-
long stretch from 107, that is, 10,000,000, on, we might expect 
minor perturbations, but at least we won’t see any interval with 10 
primes in it again—or will we?

 Between The Number of Primes Is

 10,000,000 and 10,000,100 2
 10,000,100 and 10,000,200 6
 10,000,200 and 10,000,300 6
 10,000,300 and 10,000,400 6
 10,000,400 and 10,000,500 5
 10,000,500 and 10,000,600 4
 10,000,600 and 10,000,700 7
 10,000,700 and 10,000,800 10
 10,000,800 and 10,000,900 9
 10,000,900 and 10,001,000 6

The law governing the distribution of primes must be quite subtle—
for surely there is some law. At any rate, we haven’t found 25 primes 
in a span of 100 numbers this far out, or any of those concentrations 
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we saw between 1 and 1000. Perhaps then the distribution of primes 
is settling down toward some constant number in any hundred-unit 
run—two, say, or three. We last looked at 107. By the time we acceler-
ate away to the trillions, for example, we might expect fewer than 6 
in any patch of 100. Disappointment again:

 Between The Number of Primes Is

 1012 and 1012 + 100 4
 1012 + 100 and 1012 + 200 6
 1012 + 200 and 1012 + 300 2
 1012 + 300 and 1012 + 400 4
 1012 + 400 and 1012 + 500 2
 1012 + 500 and 1012 + 600 4
 1012 + 600 and 1012 + 700 3
 1012 + 700 and 1012 + 800 5
 1012 + 800 and 1012 + 900 1
 1012 + 900 and 1012 + 1000 6

After having so triumphantly proved so long ago that there are 
infi nitely many primes, why are we having such trouble in the 
twenty-fi rst century answering this simple question about their 
distribution? Perhaps our approach has been wrong. Let’s ask 
instead if we will ever fi nd a gap larger than 6 between consecutive 
primes (6 was the gap between 23 and 29). There must be, since 
there is, for example, only one prime between 1012 + 800 and 1012 
+ 900, hence a gap of at least 50.

The startling news is that there are stretches of numbers a thou-
sand long with not a single prime among them. More: there are 
primeless stretches a million long! Since the primes never end, you 
will come on one eventually after such a span—which begins to give 
a horrifying sense of how big very big numbers are, and how 
immeasurably bigger than big the infi nity of the natural numbers is.

Yet we have hardly begun. There is at least one run of natural 
numbers a trillion long where there are no primes whatsoever; and 
another ten trillion long; and another—but you probably think 
that no human could possibly know this for sure, or that it would 
take an equally gigantic mind to understand it. In fact, the proof is 
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theory—was that any sequence of the form an + b will have infi nitely 
many primes in it, as n goes from 1 through the natural numbers; all 
that is required of a and b is that they have no common factor.

Once again we are at a loss in trying to see the structure of the 
primes: no particular rhythm carries more of them than another. 
Yet if we assume chaos we cannot but deduce despair. Since intui-
tion and common sense have left us stranded, we need an insight—
and then a proof for it to nestle comfortably into. Gauss—whom 
we saw as a schoolboy triumphantly writing on his slate—used to 
contemplate tables of primes for sheer amusement, the way 
Russians always and the English on country house weekends love 
browsing through railway timetables.

He would while away spare hours calculating in his head which 
numbers were prime in runs a thousand long. This sort of rambling 
among the naturals, like a lepidopterist out with his net, was to 
gain him not only a collection of iridescent creatures but give him 
the basis, at last, for something approaching their taxonomy.

His intimacy with the raw data led him to mull over a question 
with a statistical fl avor: ignoring the stuttering way they pop up, might 
there yet be some regularity in how the sheer number of primes 
increases? Let’s graph how many primes there are up to the number

x (in our diagrams the horizon-
tal axis will be the inputs: values 
for x; and the vertical axis the 
outputs: number of primes less 
than or equal to x). This func-
tion is commonly called π(x), 
meaning the number of primes 
less than or equal to x (that “π” 
has nothing to do with the π 
from geometry, but was chosen 
so that the Greek p would 
remind us of “prime”). So π(3) 
= 2, since there are two primes 
(2 and 3) less than or equal to 3, 
π(4) is also 2, and π(8) = 4 (2, 3, 
5, 7 are the primes less than or 
equal to 8).

Carl Friedrich Gauss (1777–
1855), a mason’s son and the 

master builder of mathematics.
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Only the horizontal “treads” matter in this step-graph. The
 vertical “risers” are conventionally put in just to give it a

coherent shape.

Here is the graph of π(x) for x up to 100 (in order to accommo-
date the slow growth of the primes, we have shrunk the units on the 
vertical axis until those on the horizontal axis are about seven times 
their size, so that the graph looks much steeper than it should):
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This rises by uneven steps, but on a staircase with at least a steady 
camber to it, so that a brush stroke would make the rough places 
smooth—and a smooth curve stands a good chance of represent-
ing a congenial function.

Now when you look at π(x) for x up to 50,000, you see such a 
curve: the irregularities have startlingly been spirited away, as the 
remote full moon makes a perfect circle in the sky.

Yet smooth as the curve may be, we can’t predict how it will 
continue, or understand what gives it the shape it has, unless we 
discover a function which accounts for it: a function whose graph 
it is.

The amazing fi fteen-year-old Gauss came up with such a func-
tion. He looked at the data we saw on page 79–80 and realized 
that the ratio of x to π(x) increased by roughly 2.3 from one power 
of 10 to the next. 2.3? To someone utterly engrossed in mathemat-
ics this number will ring with the familiarity that “To be or . . .” 
has for a reader of English: it is the beginning of a famous expo-
nent. There is a number е—an irrational close to 2.7—which lies 
at the heart of biology and economics, because it expresses organic 
growth. When е is raised to about 2.3 you get 10. The eccentric 
Scottish mathematician John Napier cobbled together two Greek 
words, logos and arithmos, to make “logarithm,” for talking about 
what exponent is needed to raise a chosen number (the base) to 
reach the number you want. Since “23 = 8” says you must raise the 
base 2 to the power 3 in order to get 8, Napier wrote: the loga-
rithm with base 2 of 8 is 3 (abbreviated ln

2
 8 = 3). The number 

you need to raise е to, in order to get 10, is about 2.3 (lnе 10 ≈ 2.3; 

9781608198696 The Art of the Infinite (836h).indd   879781608198696 The Art of the Infinite (836h).indd   87 04/02/2014   20:31:4004/02/2014   20:31:40



The Art of the Infi nite

88

most people simply write ln 10 ≈ 2.3, where “ln” by itself means 
with base е). A brief note in the Appendix explains е and its 
logarithm.

Gauss therefore leapt to the conjecture—on the basis of how the 
primes were distributed among the fi rst 3,000,000 integers!—that 
π(x) was closely followed by 

x
ln x  . You see here how well the two 

curves match:

Logarithms and irrational numbers? How could these creatures 
of realms so remote from the naturals have any bearing on the 
primes? Perhaps because our looking is statistical; or because no 
sort of number is an island but each is a part of the main, and the 
sea of functions implicates each in all.*

Gauss was unable to prove his conjecture, which did not 
become a theorem until 1896, when it was proved independently 
in two very different ways by two very different men, who were 
born a year apart and died a year apart, almost a century later; 

* е is by no means the only irrational that lives with the primes. The π of geom-

etry, which is an irrational beginning 3.14159 . . . . , has pitched its tent in their 

midst. For if p
1
, p

2
, p

3
 and so on are the primes in order, then the infi nite product,

  π2

 6  

and π2 is irrational too. Euler fi rst miracled this up. We still hardly understand all 

it implies.
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their lives were to diverge radically from their intersection at the 
proof of this conjecture. One, who gloried in the name Charles 
Jean Gustave Nicolas de la Vallée Poussin, was born, lived, and 
died in Louvain, in Belgium: a professor, like his father before 
him, at the university there; survivor of two world wars and fi fty 
years of teaching. The other, Jacques Hadamard, was good in all 
subjects but math when at school (“In arithmetic until the seventh 
grade I was last or nearly last”); worked vigorously to clear his 
relative Dreyfus; had two sons killed in the First World War, and 
fl ed from France to America during the second. Each sought a 
solution to the clarion call of this problem in the texture of ideas 
and techniques thickening around it, and followed his separate 
clue out of the labyrinth.

You will notice that the graph of 
x

ln x  stays below π(x) up to x = 
50,000. Gauss, endlessly fecund, came up with an even better 
approximation to π(x), this one narrowly overestimating it, up to 
at least x = 1,000,000,000. His new approximation, called Li(x), 
involved a notion at the heart of calculus, the integral:

x

2

1Li(x) dt
1n t

=∫  
.

Here the eighteenth-century elongated S denotes the area between 
the x-axis and the curve traced by the function (in this case that 
function is the reciprocal of the logarithm function) between two 
vertical lines (here set up at 2 and, to its right, at x).

You see the remarkable accord between π(x) and Li(x) up to x = 
50,000 (the area Li(x) measures, after all, grows as x grows, and like 
π(x), ever more slowly):
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On this scale you can’t even see the difference between them, yet 
up to very large x, Li(x) always overestimates π(x). Gauss remarked 
that for x = 400,000, π(x) = 33,859 and Li(x) ≈ 33,922.621995—a 
difference of less than .2%. Does it always overestimate? Strangely 
enough, no. Somewhere very far out, π(x) becomes larger than 
Li(x). We don’t yet know where this happens, but it has been 
shown to be past 1020, and is likely to be around 1.39822 · 10316. 
This number, far greater than the number of particles in the 
universe (a mere 1075 or so), is no more than a peak in the moun-
tainous landscape where number theorists stride. Once past their 
fi rst crossing, Li(x) and π(x) exchange places infi nitely many times 
as they draw closer and closer together.

The ratio x
ln x  that appears in this integral turns out to have a 

close relative that tells us something about the distribution of twin 
primes—even though we still have no proof that there are infi -
nitely many of them! A great deal of modern work allows us to say 
that for any number a, the number of twin primes in a run of 
naturals from x to x + a will be close to

2

1.3a
(ln x)

(for purists, 1.3 is, somewhat more precisely, 1.3203236316 . . . ). 
This estimate predicts 584 twin primes between 108 and 108 + 
150,000, and 601 have been found. It predicts 166 between 1015 
and 1015 + 150,000, and 161 have been found.

9781608198696 The Art of the Infinite (836h).indd   909781608198696 The Art of the Infinite (836h).indd   90 04/02/2014   20:31:4004/02/2014   20:31:40



Designs on a Locked Chest

91

Even the great gaps we saw yawning amid the primes can be 
measured by logarithms. The length of the largest prime-free gap up 
to the number x—call this g(x)—is well approximated by (ln x)2:

Looking at the distribution of the primes, the contemporary 
mathematician Don Zagier wrote that he had “the feeling of being 
in the presence of one of the inexplicable secrets of creation.” 
Certainly the need to make excursions into mathematical conti-
nents so remote from the naturals in order to bring back some 
understanding of them, has an effect like music’s on our minds: 
how can vibrating brass and wire, gut and air, set up such abstract 
poignancy within us?

What are the hints we should follow: which are beacons, which 
false fi res? Is it important to know if the number of twin primes is 
indeed infi nite? What about the primes that are “palindromic,” 
like 101,  373, and  929—does it matter if there is an infi nite number 
of them too? Or the “counting primes” such as 1,234,567,891 and 
12,345,567,8901,234,567,891 and (this way madness lies) 1,234,56
7,891,234,567,891,234,567,891? The “topping and tailing” primes: 
you can remove digits from either end of 739,397 and what’s left 
remains prime; you can take as many digits as you like from the tail 
of 739,391,133 or from the top of 357,686,312,646,216,567,629,157 
and each is still prime; do we care if there is an infi nity of these? 
Will hidden vistas open if we one day prove the 250-year-old 
conjecture of Christian Goldbach, that every even number from 4 
on is the sum of two primes? It is the sole memorial to the 
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formal—the geometric and algebraic—still be fruitful? Let’s follow 
the natural drift of our curiosity from triangular and square on to 
the pentagonal numbers:

    
 1 5 12 22

so this sequence begins 1, 5, 12, 22, and goes on to 35, 51, 70 . . . 
Aren’t these just the sums we saw on page 97? But why—why 
should this be so? And what is the connection of the pentagonal 
shape to triangular numbers?

Clearly there will be no sum of two triangular numbers here, 
since we can’t rebuild even 5 that way. But 5 = 1 + 4; 1 is triangular 
and 4 is square—what if that’s the breakup we’re looking for? 
Visual ingenuity to our aid again: let’s design our netted penta-
gons with triangles and squares in mind. This only takes some 
pushing in at the sides.

    
 1 1 + 4 = 5 3 + 9 = 12 6 + 16 = 22

That is:

and indeed

+  = 10 + 25 = 35, which is , and so, it seems, on.
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Once we write out our discovery in formal terms, we can try 
proving it. Since it looks as if the nth pentagonal number is the
(n – 1)st triangular plus the nth square, and since the (n – 1)st trian-
gular is (n 1)n

2
− , our conjecture is:

n  = n-1  + n  = 
2 2 2

2(n 1)n (n n 2n ) (3n n) n(3n 1)
n

2 2 2 2

− − + − −+ = = =

and for n from 1 to 7, this gives us the values we want:

1, 5, 12, 22, 35, 51, 70.

We have our insight, but we can’t hope for a proof yet because 
we still need to understand exactly how any pentagonal number is 
built up from the previous one. Mere manipulation of letters rarely 
leads to seeing—but looking does.

Let’s look then at how the third pentagonal number grows from 
the second, and the fourth from the third.

In each case, two of the old sides were extended, and three new 
sides fi tted on to make the larger pentagon. There is one more dot 
per side in this new pentagon, so it looks as if we have added 3 
dots per side on these 3 new sides of the third, 4 per side on the 3 
new sides of the fourth. But this can’t be quite right, since new 
sides share a dot at their corners, so we have to subtract 2 dots, 
giving us
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James Topaz) singles out the individual in that branch. So 3
5P  is the 

fi fth triangular number, for example, 4
2P  is the second square 

number, and the seventh pentagonal number is 5
7P . What we pile 

on the spine of this weedy symbol will save us an enormous 
amount of mental energy.

Now we can indulge in the pleasures of the table once more, in 
hopes of insight into what is actually happening. Here are the fi rst 
few entries for some k-gonal sequences:

Old Name New Name First Second Third Fourth Fifth

triangular 3-gonal 1 3  6 10 15
square 4-gonal 1 4  9 16 25
pentagonal 5-gonal 1 5 12 22 35
hexagonal 6-gonal 1 6 15 28 45
heptagonal 7-gonal 1 7 18 34 55

The columns are interesting but the rows even more so. Each starts 
with 1, and the differences between columns in the fi rst row are 2, 
3, 4, 5, . . . . In other words, the difference grows by 1 for each new 
column.

In the second row, the differences are 3, 5, 7, 9, . . . . Those grow 
by 2s. The third row’s differences grow by 3s: 4, 7, 10, 13, . . . and 
the fourth row differences—5, 9, 13, 17, . . .—grow by 4s. What 
matters here seems to be this “growth number”; let’s call it g. Put 
in terms of each k-gonal sequence, the differences grow by

1 in the 3-gonal (g = 1)
2 in the 4-gonal (g = 2)
3 in the 5-gonal (g = 3)
4 in the 6-gonal (g = 4).

On this scanty evidence we hazard the conjecture that in a k-gonal 
sequence, g will be k – 2.

It looks, then, as if we have the same hybrids in every case that 
we had with the triangular numbers: each term is a sum in an 
arithmetic series; each series starts with a = 1; the respective g is
k – 2.
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k-gonal First Second Third Fourth Fifth

3-gonal 1 1+2 1+2+3  1+2+3+4   1+2+3+4+5
4-gonal 1 1+3 1+3+5  1+3+5+7   1+3+5+7+9
5-gonal 1 1+4 1+4+7  1+4+7+10  1+4+7+10+13
6-gonal 1 1+5 1+5+9  1+5+9+13  1+5+9+13+17
7-gonal 1 1+6 1+6+11 1+6+11+16 1+6+11+16+ 21

Look! The nth term of a polygonal sequence is the sum of the 
fi rst n terms of an arithmetic sequence where a = 1 and d = k – 2.

Using the formula for the sum of arithmetic sequences which 
we perfected on page 97: n(2a (n 1)d)

2
+ − , with here a = 1 and d = k – 2, 

we get

k
n

n(2 (n 1)(k 2))P
2

+ − −
= .

This simplifi es to

k
n

n (nk 2n k 4)P
2

⋅ − − +
= .

You can check this, if you like, for some entry in our table—the 
fourth column, say, of the fi fth row, the fourth heptagonal number, 
which is 34. And

7
4

4 (7 4 2 4 7 4)P 2 (28 8 7 4) 2 17 34
2

⋅ ⋅ − ⋅ − +
= = ⋅ − − + = ⋅ = .

Right as rain, and sometimes even more so.
Does this remarkable general formula turn into the particular 

formulas we got for triangular, square, and pentagonal numbers? 
With squares, for example, is the nth square number really n2?

4 2
n

n (4n 2n 4 4) n 2nP n
2 2

⋅ − − + ⋅
= = =

and for pentagons, will we have the formula n (3n 1)
2

⋅ − ?
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If a = 1 and r = 2, for example, you get the larger and larger 
numbers

1, 2, 4, 8, 16, . . . .

Geometric series add these all together, up to a certain term, say 
the 64th. Since each term is 2 raised to a power one greater than 
the previous one, this sum would be

1 + 2 + 22 + 23 + . . . + 263,

a fi nite but very large number, which anyone using the sure-fi re 
Martingale System of betting will know from nightmares. In this 
system you keep doubling your bet until you win—then quit. Had 
you started with a dollar, you might have to go home with two—
but a really bad run of luck, 64 tries long, would leave you owing 
more dollars than there are atoms on the earth to make them with.

When the ratio shrinks to a positive number less than one, strange 
and wonderful things begin to happen—especially if infi nity enters 
again as the number of terms. Let’s experiment with a = 1 and r = 1

2 .

1 1 1 11 ....
2 4 8 16

+ + + + +

The successive terms grow rapidly smaller, their sum grows stead-
ily larger—but will it ever become infi nitely large, or as large as 19, 
or 3, or 2.07? In our experimental mood let’s look at partial sums:
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A reasonable conjecture at this point would be that the sum up to 
 will be a fraction whose numerator is twice its denominator less 

1: that is,

n 1

n

(2 1)
2

+ −
.

If so, the sum keeps falling just short of 2, though by less and less. 
This would mean that no matter how many terms we add on we 
will never get to 19, or 3, or 2.07—or even 2; 2 will be the reach 
that always just exceeds our grasp.

This is a peculiar situation, which gives us second thoughts 
about the infi nite: an infi nite number of terms whose sum is shak-
ily fi nite. Does this happen only when r= 1

2 ? Let’s experiment 
further, taking r= 1

3 : 1, 1
3 , 1

9 , 1
27 , 1

81 . . . (remember: we get each new 
term through multiplying the previous one by 1

3 ).
The successive sums of these are

If this is settling down to some number, as the previous series 
seemed to do, it is a bit more obscure—perhaps because the 
denominator is odd. The fraction’s numerator keeps falling just 
short of half the denominator, as if the series were approaching
1 1

2 or 3
2 .

As with triangular numbers, we grow impatient and ask for a 
pattern to these patterns. Perhaps our asking is premature and the 
next example, with r= 1

4 , would help. The sequence is 1, 1
4, 

1
16, 

1
64, 

1
256, 

. . . and the successive sums are
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and a shrewd guess would suggest that 11
3  was the elusive she.

Stepping back, the glimmerings of a beautiful regularity dawn. 
Our experimental results made 2, 3

2 , and 4
3  the likely targets of 

series whose ratios were, respectively, 1
2 ,1

3 , and 1
4 . If we think of 2 as 

2
1 , then it might well be that when the ratio is 1n , the sum of the 
infi nite series resulting is n

n 1− .
Two distinct diffi culties immediately come up. How can we 

speak of an “infi nite sum” at all, especially on the basis of what 
must always be fi nite approximations? And second, why are we 
even indulging in the luxury of such a conjecture on the basis of so 
few trials: where is the proof?

Given the two voices within us you would expect two answers 
(at least) to the fi rst question. The more cautious voice says that of 
course those numbers we have come up with are never actually 
attained—but they do seem like limits drawn ever closer to—as 
close as you like, given suffi ciently many terms. While the growing 
sums also get closer to numbers beyond their respective limits, 
these limits are the least such numbers approximated to from 
below but never reached. This voice assures us that if we say “the 
limit as n goes to infi nity is such-and-such” we mean what we say: 
is on the way to but (like Chekhov’s three sisters and Moscow) 
never gets there. Or if you like, we mean that the word “limit” 
abbreviates the rather complicated idea we have just expressed.

The other voice damns such caution and adds infi nity to what we 
reckon with and on: 3

2  is what all the terms of the fi rst series add up 
to, just as language points to what it ultimately can’t say. The rational 
numbers, which we fi rst understood as ratios of the seemingly more 
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So in general, as long as r is between 0 and 1,

n
S lim∞ →∞

=
  

n1 r 1 0 1
(1 r) (1 r) (1 r)
− −

= =
− − −

.

We say that our infinite geometric series converges to this limit. 
This is an astonishing victory for the finite mind over infinity.

The eye can share this triumph through a proof whose picture 
speaks areas, if not volumes. All you need know is that two shapes 
are similar if they have the same angles (i.e., one is a scaled-down 
version of the other); that if two shapes are similar, their sides are 
in proportion (and vice versa)—and that parallel lines meet a line 
crossing them at the same angle.

Start by making a trapezoid PSUT, with right angles at S and U 
(so PS and TU are parallel). Let PS = SU = 1 and UT = r.

Paste another trapezoid TUVW on its right with TU = UV = r, 
and the line PT continued to meet the vertical from V at W.

These trapezoids are similar (right angles at their bases, equal 
angles made by parallels meeting the top), so their sides are in 
proportion. This means that

VW r
r l

=

so VW = r2.
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move through a demonstration continuously and smoothly. 
Aren’t we being tossed back and forth once again between the 
intuitions of space and time: between the visual cortex and 
powers we read as greater precisely because they work with the 
unembodied?

The different styles of proof you have just seen are more on a 
par with one another than were those in Chapter One, where the 
visual had it all over its algebraic equivalents. Is that because we are 
now more experienced with the algebraic, or because our stand-
ards of proving have grown higher—or is it just a matter of equal 
stimulation to different centers of pleasure in the mind? And could 
a visual proof still trump an algebraic one?

Consider a maverick infi nite sequence that is neither arithmetic 
nor geometric:

1 2 3 4 5
2 4 8 16 32

+ + + + + . . .

where each term is of the form n

n
2 . What is its sum? If you picture 

this as did Nicole d’Oresme, Bishop of Lisieux, around 1350, the 
answer suddenly stares disconcertingly back at you: the left-hand 
tower shows the sequence vertically; the second shows the sum of 
each horizontal row in turn—the third brings the second dramati-
cally down to earth.
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The sum is 2. What is not a little disturbing is that read from 
right to left, a fi nite area is extended infi nitely in space (those 
endlessly rising blocks). When three centuries later Evangelista 
Torricelli—the inventor of the barometer—took this paradox one 
dimension higher by depicting an infi nite solid whose volume was 
in fact fi nite (the curve 1

x  spun around its axis, from 1 to infi nity),

Thomas Hobbes wrote: “To understand this for sense, it is not 
required that a man should be a geometrician or logician, but that 
he should be mad.” To make Hobbes’s outrage more vivid, realize 
that a fi nite amount of paint poured in would coat its infi nite 
surface (a paradox for mathematicians only; physicists know that 
molecules of even the fi nest oil will seep just so far down the trum-
pet’s diminishing diameter).

Going back to our geometric series, why should we have insisted 
that r’s value lie between 0 and 1? Certainly in our visual proof 
only that would make the line PT meet the base at Z. The choice of 
r, however, didn’t trouble George Peacock, of the Principle of 
Permanence. It must have been one day before breakfast when he 
reasoned that if r = 1, the left-hand side of

2 3 41 1 r r r r
1 r

= + + + + +
−

. . .

became 1 1
1 1 0

=
− , which he was happy to call , while the right-hand 

side would be 1 + 1 + 1 + 1 + . . . forever, which is infi nite indeed. 
And if r were 2, for example, 1

1 r−  would be –1, and as for the right-
hand side . . . the right-hand side would be 1 + 2 + 4 + 8 + . . . , 
which he complacently described as more than infi nity. The third 
impossible thing he did that morning was to accept this equality of 
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larger: the fi rst ten terms—from 1 to 1
10 —give a total slightly less 

than 3, and every new weight tips this balance less and less.
Freedom in mathematics is like freedom everywhere: under law. 

We enter into the covenants expressed in our axioms in order to 
protect our freedom. The perplexity is that as we explore and develop 
new territories, we don’t quite know what those laws are—for while 
we carry our axioms into the wilderness with us, they may not contain 
charms to subdue the strange creatures we meet. So with infi nite 
series. It took a combination of daring and nostalgia to master this 
sum of the terms 1

n : nostalgia in the instinct to compare it with what 
we know and daring in the willingness to do so without reservations. 
And then, that Alcibiades touch of ingenuity, to fi nd among the famil-
iar forms just those that would give shape to this Proteus.

1+ 1
2 —part of our past. 1

3 —had the next term been 1
4  we would 

have been on home ground. Well, 1
3  is greater than 1

4 , so 1+ 1
2 + 1

3  is 
just a touch greater than 1+ 1

2
++ 1

4 . Ah—and 1+ 1
2

++ 1
3

++ 1
4  is precisely 

that touch greater than 1+ 1
2 + 1

4 + 1
4 . But 1

4
++ 1

4  is 1
2  again: and that was 

the key to something uncanny which Nicole d’Oresme discovered. 
The fi rst four terms of our new series add up to more than 1+ 1

2 + 1
2 .

Thinking in terms of successive halves, the next four terms are each 
greater than or equal to 1

8 , so their sum contributes more than 1
2  to 

the total; and the next eight (each being greater than or equal to 1
16 ) 

contribute more than 1
2  again.

1+ 1
2

1    1
2

+ 1
3

+ 1
4

>1
2

compare
each term

with 1
4

{
+ 1

5
+ 1

6
+ 1

7
+ 1

8
>1

2
compare
each term
with 1

8

1 244 344
+ + . . .

The next run of 16 terms will add its own total of more than a half, 
as will the subsequent 32 terms. So this series must slowly edge its 
way up and past any sum of halves, and hence past any number 
whatever: it is unbounded and must diverge!

A wholly new set of instincts had to be developed now to cope 
with these innocent-seeming infi nite series. Which were enemies 
and which were friends, and unto whom? Subtle and super-subtle 
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tests were devised to sniff out 
the series that converged; and 
what they converged to; and 
how much information could 
be extracted from divergent 
series. You prayed that the series 
you were exploring would turn 
out to be convergent. There is a 
story like a Biedermeier paint-
ing of the famous Hermann 
Minkowski, walking through 
the streets of Göttingen, 
Hilbert’s Mecca for mathemati-
cians, in the early years of the 
twentieth century. On 
Weenderstrasse he saw a 

student he didn’t know, deep in thought. Minkowski went up to 
him, patted him on the back and said: “It is sure to converge.”

Wonders appeared in these woods. Important numbers like π 
emerged from the caterpillar of an infi nite series:

π 1 1 1 1 14(1 ...)
3 5 7 9 11

= − + − + − +

and е—the base of the natural logarithms which we met in the 
last chapter—is an irrational which is approximately

2.718281828459045 . . .

but is precisely the sum, as n goes from 0 to infi nity, of 1
n!:

1 1 1 1 ...
0! 1! 2! 3!

+ + + +

or, as it is more concisely written:

e
n=0

1S
n!

∞

=

Hermann Minkowski 
(1864–1909)
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What never emerged in those touches is a stunning peculiarity. 
In order to reach conclusions about very fi nite fi gures, very near at 
hand, Euclid has to make an assumption involving the infi nite. 
The fi fth of his neat set of postulates says in effect that if  is a line 
and P is a point not on it, then there will be one—and only one—
line through P (call it m) which is parallel to .

Parallel: that is, m and  will never intersect. Nowhere, through all 
the infi nite extent of the plane, will you ever come on a point 
common to both.

This postulate made the Greeks uneasy. Expert seamen though 
they were, their longest voyages always turned round; their longest 
epics might take heroes to the Hesperides or the Phaeacians, but 
these were only a sleep away. To invoke the infi nite was to call up 
Formlessness and the Void, to detach mind from experience. Yet 
there was no way around it: you couldn’t prove as homely a truth 
as this, that the angles in a triangle added up to a straight angle (or 
as we would say, to 180°), without the parallel postulate to add 
divine strength to your mortal arm.

For if you picture triangle ABC with its base, BC, lying on 
line :
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and label its interior angles a, b, and c:

then using the parallel postulate you can draw the one and only 
line m through A parallel to  (in symbols, m  ):

This creates two new angles—call them d and e—fl anking a:
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and d, a, and e evidently add up to a straight angle. Now for a 
touch of human devising. Extend the line making side BA 
upward—call this line n:

then by what we claimed on page 111—that parallel lines meet a 
line crossing them at the same angle—the angle we have called f, 
between lines n and m, must be the same as the angle b between 
lines n and :

 f =  b .

But when two lines, such as n and m, intersect at a point like A,

the “opposite angles” f and d are the same:

 d =  f ,
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so

 d =  f =  b ,

that is,

 d =  b .

In just the same way—extending side CA upward—form  g:

 g =  c, and  e =  g ,

so

 e =  g =  c ,

that is,

 e =  c .
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their corresponding parts—side-lengths and angle-measures—are 
equal, so that you could, if you wanted, fi t one on top of the other 
and see only a single copy.

Instead of having to check, every time, each of the three pairs of 
sides and each of the three pairs of angles, Euclid sets down as a 
postulate (is it self-evident?) that if just two pairs of corresponding 
sides and the angles between them are equal, then the rest of the 
pairs must be equal too: the triangles are congruent.

Here AB = DE, BC = EF, and B =  E:

So by this side-angle-side (SAS) postulate, ΔABC ≅ ΔDEF. From 
this he is able to deduce that angle-side-angle (ASA) will also be 
enough to guarantee congruence:

( A =  D, AB = DE,  B =  E, so ΔABC ≅ ΔDEF by ASA)

This deduction is needed because some combinations don’t 
suffi ce, such as SSA: two pairs of congruent sides and a pair of 
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congruent angles not lodged between them—because, as you see 
below, those conditions allow you to create two noncongruent 
triangles: ABC and ABC´.

In the special case of right triangles, the equality of one pair of 
legs, and of the respective hypotenuses, suffi ces:

(AB = DE, AC = DF, so right ΔABC ≅ right ΔDEF)

Do these symbols and abbreviations help or hinder? They are 
meant to make language transparent so that the ideas will shine 
through—but at fi rst they may act like a ratchet, catching at 
thought. As proofs lengthen from a few to many steps, we trust 
more and more to the notation to carry our concentration forward. 
As with written music, chess manuals, or the shorthand of a trade, 
we come with practice to take in ever larger sweeps at a glance. The 
aim is always to aid intuition, not to fossilize insight into 
formalism.

The letters, markings, angle signs, and congruence signs belong 
to the proving, not to the triangles themselves. What have they in 
their pockets save their angle sum? With triangles, what you see is 
what you get. They may be embodied in a corner brace down in 
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the basement, or in three stars a million light-years away—but 
this atom of plane geometry is as innocent of secrets as a baby’s 
face.

Of course, the faces of babies no longer seem quite as innocent 
as they did in our pre-lapsarian youth, since their minute features 
must develop as the genetic code threaded through them 
dictates—so not even such metaphors can come close, it seems, to 
the emptiness of a triangle. Its sides may lengthen or shrink, its 
angles narrow or widen, but these infi nite variations on its 
simplicity serve only to emphasize how thoroughly we know it, 
inside and out.

Let’s just tickle this emptiness a bit before moving on, to see if 
virtual particles pop into its empty space. If you fi nd the midpoint 
D of one of a triangle’s sides, such as AB, and set up (see the Annex) 
a perpendicular to AB there—call it —(in symbols,  ⊥ AB),

then any point Q on  will be as far from A as it is from B, and 
conversely any point equally far from them will lie on . You can 
get a feel for why this is so if you think of  as a fl agpole and lines 
from Q to A and B as guy wires, holding it steady. If you prefer a 
formal proof, Euclid will oblige.
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In this diagram (it looks like a specifi c triangle, but stands, as in a 
morality play, for All), ΔADQ and ΔBDQ are congruent by SAS, 
because AD = BD (since D is the midpoint of AB), QD is equal to 
itself, and the angle trapped between these corresponding sides is 
in each case a right angle (since that is what it means for one line 
to be perpendicular to another). Hence AQ = BQ. Try proving the 
converse yourself.

Notice that nothing depended on a specifi c length for QD, so 
Q, as it slides up and down , always stays as far from A as from 
B. Well, what of it? This is just artifi ce layered on empty form. 
True. But since there was nothing special about the side AB, the 
same must hold for the perpendicular bisector m of the side AC, 
erected at its midpoint E.  and m can’t be parallel (if they were, 
CAB would be a straight line, i.e.,  A would be a straight angle, 
which would blow our triangle apart), so they must meet at a 
point O:
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Once again, the same must be true for n, the perpendicular 
bisector of BC, erected at its midpoint F. It will meet  at some 
point R and m at some point S,

making a new little triangle ORS—but does such a triangle ORS 
really exist? O is on , so it is equally far from A and B. But O is also 
on m, so it is equally far from A and C:

This can only mean that O is equally far from B and C—so O must 
also be on the perpendicular bisector of BC! This transitivity of 
equality, nothing more, shows us that the triangle’s three perpen-
dicular bisectors are concurrent: one of those signifi cant events. 
Any triangle of necessity carries invisibly around with it a specifi c 
point that is equidistant from its three vertices. This point may lie 
inside the triangle, as in our diagrams, or outside it, when the trian-
gle is obtuse (i.e., has an angle greater than a right angle, 90°):
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As you might begin to suspect, in the third case—when one of the 
angles is a right angle—this point O lies on a side: on the hypote-
nuse. This important fact will play a key role later—its proof is in 
the Appendix.

Let a skeptical friend scatter three non-collinear points A, B, and 
C as he chooses; you can always astound him by drawing an elegant 
circle through them. Join those points by straight line segments, 
making a triangle; erect the perpendicular bisectors of any two of 
these sides—and where they meet at O will be the center of the 
circle you seek, whose radius will be the length from O to any 
vertex, such as OA:
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This circle is called the triangle’s circumcircle, since it is circum-
scribed about it; and O is therefore called the circumcenter. Wipe 
that tabula rasa off the triangle’s face: it now comes equipped with 
its circumcenter, like Orion with the Dog Star:

Has a triangle other dark stars just waiting to be made visible? 
Since its only features are sides and angles and we’ve just looked at 
the side-bisectors, let’s see how the angle-bisectors behave—
perhaps they too concur.
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If  is the bisector of the angle at A, any point Q on it will be 
equally far from the two sides AB and AC (a nice counterpoint 
to the side-bisectors). As before, let’s give our intuition a formal 
basis. The distance from a point to a line is the perpendicular to 
that line from the point, so the distance from Q to AB is the 
length QD (since QD ⊥ AB) and from Q to AC it is QE (QE ⊥ 
AC), where D and E are the feet of their respective 
perpendiculars:

We want to show that QD = QE, and the easiest way to do this is 
to make them corresponding parts of congruent triangles. In this 
situation, complementary to the fi rst, we’ll use the complementary 
congruence technique of ASA. a

1
 = a

2
 in ΔAQD and ΔAQE, and 

certainly AQ = AQ. If we could just show that  r =  s . . . But the 
right angles are equal, and the sum of the angles in each triangle is 
180°, so

180° – (a
1
 + right angle) = 180° – (a

2
 + right angle),

that is,

 r =  s.

The two triangles are congruent by ASA, so their corresponding 
parts are equal—among them, QD = QE. A point on the angle 
bisector is equally far from the sides of the angle it bisects.

The bisector of  B will meet  at some point  (as before, were 
they parallel the triangle would, impossibly, have more than 180° 
in it):
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With our newly acquired sophistication, let’s draw CI and hope it 
too is an angle bisector—hope that any point on it is equally far 
from CA and CB:

We’ll think transitively, as before, and see where it leads us.

Because I is on the bisector of  A, it is equally far from AB 
and AC: ID = IE. Because it is on the bisector of  B, it is equally 
far from BA and BC: ID = IF. So IE = IF. We want ΔCIE ≅ ΔCIF. 
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We have a right angle in each, IE = IF and the hypotenuse IC is 
equal to itself—so by the “hypotenuse-leg” theorem, ΔCIE ≅ 
ΔCIF.

This means their corresponding parts are equal—and among 
these equal pairs,  c

1
 =  c

2
. Hence CI is indeed the bisector of

 C. Once again, three lines with special functions are concurrent, 
and the point I where they concur is called the triangle’s incenter, 
because with I as center and ID, for example, as radius, you can 
draw the incircle, fi tting snugly inside the triangle, whose sides will 
just touch (be tangent to) it.

How minuet-like these reciprocal movements have been: side-
bisectors, the circumcircle and its circumcenter O; angle-bisectors, 
the incircle and its incenter I. Remove the overlay of proof and 
what remains are the triangle’s secret sharers.

Are there more stowaways under the decks? You might expect 
them to be harder and harder to roust out. Well, what lines must 
accompany a triangle? The line from a vertex to the midpoint of 
the opposite side, for example, called a median. Here is the median 
 from A to the midpoint D of BC.
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Notice that the median is a new sort of line: it certainly isn’t, in 
general, the perpendicular bisector of side BC, nor the bisector of 
 A (though in the special case of an equilateral triangle it will be 
both). The median, m, from C to the midpoint, E, of AB will meet 
 at some point—call it G:

We begin to suspect that the median from B to F, the midpoint of AC, will 
pass through G, though there seems no immediate reason why it should.

For the sake of our intuition, let’s do something Euclid would 
never have done and imagine our triangle actually cut out of a thin 
sheet of metal, with its mass spread out uniformly; and then 
picture balancing this triangular gusset on a knife-edge.
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It just feels right that the knife-edge will run from a vertex, such as 
A, to the midpoint D of the opposite side—in other words, will be 
the embodiment of a median—because that way the gusset’s mass 
will be equally divided.

This would be true if we ran our knife-edge from B to the 
midpoint F of the opposite side—so these two knife-edges will 
intersect at a point G.

G is the triangle’s centroid, or center of gravity: you could spin the 
triangle around on a pinpoint put under G; if you hung it from a 
thread fastened at G it would lie level,* which means that the 
median knife-edge from C on which the triangle balances must 
also pass through G.

Metal and gussets and knife-edges don’t belong to mathemat-
ics—nor does this “proof.” It was meant only to strengthen belief, 
not yield certainty, as skirling pipes collect our powers for the 
battle ahead. Yet while we are in the mode of physical analogy, 
let’s press it further to see whether it can tell us just where this 
centroid is.

Unequal masses won’t balance at equal distances from a seesaw’s 
fulcrum, but the “law of the lever” says they will balance when the 
distances are adjusted so that the product of one mass times its 
distance from the fulcrum equals the product of the second mass 
times its distance.

m
1
 · d

1
 = m

2
 · d

2

* For a proof that any triangle has a centroid, through which all such mass-

balancing knife-edges must pass, see the Appendix.
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2 × 6 = 3 × 4

Keeping this in mind, let’s go back to our solid triangle and 
heat it so much that the metal becomes molten, and then draw 
off the mass equally to the three vertices. To keep the triangle’s 
shape, imagine thin wires connecting the three blobs at A, B, 
and C, which have cooled into beads that can slide on these 
wires:

Move the blobs B and C to the midpoint D of the wire between 
them, and solder in a wire from A to D.

The centroid G is somewhere on this new wire. Where? D now 
has twice the mass of A; so, by the law of the lever, the 
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balance-point between D and A must be twice as far from A as 
from D: in other words, the centroid G is two-thirds of the 
distance from A to D. This will be true for any median: the 
centroid lies 2

3  of the distance from the vertex to the midpoint of 
the opposite side.

At this point you may say: no need to go on—we have our 
proof and a nifty bit of thinking it was too! All of a sudden the 
enormous gap between intuition and formal proof opens 
again—more vividly than ever. On the one hand, you can feel 
the weight of conviction almost as palpably as you can feel the 
weight of those metal beads. How could a triangle not have a 
centroid, and how could it not be just where we found it? On the 
other, temperate voices remind you that if visual proofs need 
interpretation, physical ones need even more; that the “law of 
the lever” doesn’t precede but follows from mathematics; that 
we have let too many assumptions go unchallenged here (that 
mass can be replaced by masses concentrated at points; that 
mass tells us about area, and area about location of lines). Form 
itself lies behind shaped matter, and mathematics concerns itself 
with the play of form.

Like Archimedes, then—who looked to physics for his 
insights but to mathematics for his proofs—let’s carry our 
insight back into geometry and find a proof that a triangle’s 
medians are concurrent. We need only borrow from Euclid 
two early results: (1) in a triangle, the line joining the 
midpoints of two sides is parallel to, and half the length of, the 
third side;
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(here the line FD is parallel to AB, and half its length)

and (2) in that interesting shape, a parallelogram (a four-sided fi gure 
with one pair of sides parallel and equal, or—what turns out to be the 
same thing—the sides parallel in pairs), the diagonals bisect each other:

(RG = GD, FG = GS)

Confi dent of the outcome, we now begin. In ΔABC, with D and 
F the midpoints of BC and AC, respectively, draw DF and the 
medians AD and BF, intersecting at G.

Let R be the midpoint of AG, S the midpoint of BG, and draw FR, 
RS, and SD.
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Now we’ll make double use of result (1): in ΔABC, DF  AB and 
DF = 1

2  AB; and in ΔAGB, RS  AB and RS = 1
2  AB. By all-powerful 

transitivity, DF  RS and DF = RS, so RSDF is a parallelogram.
We know from result (2) that its diagonals bisect each other, so 

RG = GD. But R was the midpoint of AG, so in fact AR = RG = GD; 
that is, G is 2

3  of the way from A to D. If we repeat this construction 
with medians AD and CE,

we will get exactly the same result, with the diagonals intersecting 
2
3  of the way from A on AD. Since there is only one point on AD 
which is 2

3  of the distance from A, this point is again G: which 
means the median CE passes through G, and we have shown not 
only that the medians are concurrent but where they concur.

Part of the beauty of this proof lies in making such potent use of such 
a simple fact as that a line-segment has only one point on it which is two-
thirds of the way from one of its ends; another part lies in how it leans 
on—but then straightens up from—an intuition derived from physics.

So rich is mathematics that more—and more various—proofs 
grow in it than ways of making your point in rolling dice or devices 
for emerging from the middle game in chess. This means that 
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taste, personality, and cast of thought can be accommodated. The 
proof you’ve just seen suits lovers of symmetry; should you, 
however, have been seduced by infi nite sequences, a custom-
tailored proof is in the online Annex.

However you choose to prove it, another star winks on in the 
night sky. Our triangular Orion now, we see, is always accompa-
nied by three points:

Why stop here? the altitudes (those perpendicular lines from 
vertices to the opposite sides) must also concur—it would be too 
strange if they did not. Given the way our story has evolved, you 
would expect that to prove this would be harder still. We’re always 
wrong-footed by mathematics: it will take only the audacity of 
Alcibiades and looking askew to make this new truth appear.

The median proof in the Annex involved going down a tunnel 
inside a triangle; this one—to prove that the three altitudes are 
concurrent—reverses the direction. We’ll take our triangle ABC 
and build another one around it.

The parallel postulate (once again vitally needed) guarantees 
that through C there is one and only one line  parallel to AB—so 
let’s construct it:

(our little arrows here mean that the two lines they are on are parallel).
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Do the same now at A and B: through A, the only line parallel to 
BC, and through B, the only line parallel to AC:

These new lines form a new triangle; we’ll label its vertices R, S, 
and T.

The ingenious person who fi rst came up with this proof built such 
an enclosing triangle because it gave him two parallelograms, RCBA 
and CSBA (each is a parallelogram because in each, the sides are 
parallel in pairs). This guaranteed that RC = AB, and from the second 
parallelogram, that CS = AB. So by transitivity again, RC = CS, 
making C the midpoint of RS. You probably rightly sense that transi-
tivity is as fundamental to our thought as triangles are to Euclidean 
geometry—that in fact it is the mind’s triangle, showing us that going 
from one truth to another via a third means that we can now go 
directly.

If we chase the other parallelograms around in the same way, we 

9781608198696 The Art of the Infinite (836h).indd   1469781608198696 The Art of the Infinite (836h).indd   146 04/02/2014   20:31:5104/02/2014   20:31:51



Euclid Alone

147

see that A is the midpoint of RT and B of ST. Pretending that 
ΔABC isn’t even there and looking at ΔRST only, erect (at A, B, 
and C, of course) the perpendicular bisectors of the sides of ΔRST: 
w, x, and y. We know, from the very fi rst theorem of this chapter, 
that they meet at a point: the circumcenter of ΔRST—but here, 
let’s call this point H:

Of course, ΔABC won’t go away, nor do we want it to. Since w 
is perpendicular to RT, it must also be perpendicular to BC, 
which is parallel to RT. x is, for the same reason, perpendicular to 
AC and y to AB. Yes—but this means that w, x, and y are the alti-
tudes of ΔABC, and we have now proven them concurrent (at H), 
by thinking of them as lines serving another end in a different 
triangle. So the nimble mind coaxes new insights from old with 
that economy that marks the noblest arts. H is called the ortho-
center of ΔABC, the fourth fi xed point coded into every triangle’s 
DNA.

What we spoke of before as a minuet has turned out to be a 
quadrille: a quietly formal dance on the otherwise empty triangu-
lar fl oor. And what an intricate dance it is! Look again, for exam-
ple, at a triangle ABC and its orthocenter H:
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Draw AH and BH: then C is the orthocenter of ΔAHB! Why? Just 
turn your looking inside out: since an altitude is perpendicular to 
a side, the side must also be perpendicular to the altitude, and the 
two can switch roles in this masquerade. Is this an utterly unintui-
tive revelation, a tautology—or both? Take pencil to diagram to 
decide.

These stars shone singly in 
Euclid’s sky. By the Age of 
Enlightenment they sang in glori-
ous voice to Reason’s ear, when 
Euler saw that the three points O, 
G, and H—the circumcenter, 
centroid, and orthocenter—are 
always collinear! The line they lie 
on is called the Euler Line. The 
proof has his easy genius to it.

ΔABC is either equilateral or 
not; if it is, O = G = H, so of 
course this one point is on a 
line. But if ΔABC isn’t equilat-
eral, then its centroid won’t be 
its circumcenter, so draw the 
line from O to G and extend it 
twice its length to a point we 
hope will turn out to be H—so 
we’ll call it H*.

Leonhard Euler (1707–
1783), father of thirteen and 

endlessly productive in 
mathematics.
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If we can prove that the altitudes all pass through H*, we will have 
proved that H* = H and so O, G, and H will be collinear.

First draw CG, and since G is the centroid, when we extend CG 
to meet AB at D, D will be the midpoint, since CGD is a median. 
And the perpendicular bisector will go up from D through O, since 
O is the circumcenter.

Because we know from page 144 that the centroid is 2
3  of the 

distance from vertex to opposite side, we know that the ratio of CG 
to GD is 2 to 1. By the way we constructed it, that is also the ratio 
of H*G to GO.

The line begging to be drawn is from C to H*, continued to 
meet AB at K.
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The little winged fi gure trapped inside ΔABC is made up of ΔDOG 
and ΔCH*G, which have to be similar, since they have a pair of 
angles equal (the opposite angles  CGH* and  DGO), and the 
sides surrounding this angle are in proportion.

This means that since OD is perpendicular to AB, so is CK: so 
CK is the altitude from C, and it passes through H*. Reasoning 
similarly, the other altitudes show up passing through H*, so H* is 
indeed H, the orthocenter—which therefore lies on a line with the 
centroid and the circumcenter.

Once again Heraclitus is right: hidden relations are more power-
ful than those we see. These power-points of a triangle are subject 
to powers greater still.

Concurrent lines, collinear points—are there other fundamen-
tal shapes that hover invisibly over a triangle? Yes—and to call up 
a very surprising one we need only invoke one new fi gure to 
combine with those we already know: if you have a right triangle 
like FDN, then it fi ts neatly into—is inscribed in—a semicircle.
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Long before Euclid was born, Thales proved that if a triangle is 
inscribed in a semicircle, then it is a right triangle—and sacrifi ced 
an ox to celebrate his discovery. So says Pamphile; and although 
she lived more than half a millennium later, it would be nice to 
believe her. It would be equally nice—and not that hard—to 
believe that Thales proved the converse too: “if a triangle is a right 
triangle then it can be inscribed in a semicircle”—for this follows 
in one step from our proof in the Appendix to page 135. Let’s be 
generous and call this result “Thales’s Converse.”

Now we let our fi gures combine to re-create a discovery made by the 
reclusive high school teacher Karl Wilhelm Feuerbach in 1822: that in 
any triangle ABC, a seemingly random scatter of nine points—

the midpoints of the three sides, the feet of the three altitudes, and 
the midpoints of the three line-segments connecting the ortho-
center H to the vertices—must all lie on a circle!

In our diagram these points are D, E, and F (the midpoints of the 
sides); J, K, and L (feet of the three altitudes, with orthocenter H); 
and M, N, and P, the midpoints of AH, BH, and CH, respectively.
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The number of points involved and the late date of the discov-
ery might lead you to suspect that the proof will be diffi cult; yet it 
uses no more than parallels and perpendiculars, parallelograms—
and, as ever, transitivity.

1.  By our fi rst result on page 143, FE  AB (midpoints of sides 
in ΔABC) and MN  AB (midpoints of sides in ΔHAB); so by 
transitivity, FE  MN.

2.  Likewise, EN  CH (midpoints of sides in ΔCBH) and FM  
CH (midpoints of sides in ΔCAH);

3.  So by transitivity, FM  EN.
4.  This means that FENM is a parallelogram.
5.  But since CHJ is an altitude, it is perpendicular to AB (CHJ 

⊥ AB), so by transitivity again (and again), FM ⊥ MN and 
EN ⊥ MN.

6.  That turns the parallelogram FENM into a rectangle.
7.  Thales’s Converse allows us to conclude that F, M, N, and E lie 

on a circle with diameter FN and center R, the midpoint of FN.
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We are a third of the way there. The next part of the proof is 
exactly like the fi rst, but looks at points F, D, N, and P. These too, 
and for the same reasons, are the vertices of a rectangle:

One of its diagonals is FN, so these four points, F, D, N, and P lie on 
a circle with diameter FN and center R at its midpoint—the same 
circle, therefore, as before, so that F, M, N, E, D, and P all lie on it:

But what about J, K, and L, the feet of ΔABC’s altitudes? The 
diagonals of our two rectangles—FN, EM, and DP—are all diam-
eters of this circle with radius R.

Look at diameter FN. The right triangle FLN is built on it (since 
BNL is an altitude, L is a right angle),
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so by Thales’s Converse once more, L lies on the circle with diam-
eter FN and center R—our circle.

Likewise the right triangle PJD is built on diameter PD, so J is on 
this circle; and right triangle MKE is built on diameter EM, which 
means K is on it.

So all nine points lie on this single circle, called by some the 
Nine-Point Circle, others the Euler Circle—but most appropri-
ately the Feuerbach Circle, especially since he also noticed that it is 
tangent to four other important circles: externally to the three 
circles tangent to the sides of the triangle, and internally to the 
incircle.

Will it surprise you to learn that R, the center of this wonderful 
circle, lies on the Euler Line? And would you be surprised to learn 
that this story is hardly over? For look at small triangles formed 
within the original one by taking each vertex with the two adjacent 
feet of the altitudes: each has, of course, its Euler Line (unless such 
a triangle is right or equilateral)—and these three lines are concur-
rent at a tenth point on the Nine-Point Circle. Great fl eas have little 
fl eas . . . (to see them, look at the Appendix).
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Our brief glimpse at what seemed an empty triangle has uncov-
ered fi ve points, a peculiar line, and now this circle that always 
accompany it, invisible as familiars to all but those who know the 
spells to make them appear.

 

. . . stare

At nothing, intricately drawn nowhere

In shapes of shifting lineage . . .

Edna St. Vincent Millay wrote that in her sonnet “Euclid alone 
has looked on Beauty bare.” Alone? Thales too, and Euler and 
Feuerbach, Hobbes and how many others, doodling on telephone 

pads, heard the call and learned 
how to look at this pregnant 
nowhere—or is it everywhere, 
these triangles that are only 
represented by diagrams but 
lie somehow behind or beyond 
or within them? Isn’t geome-
try, as Poincaré once said, 
“L’art de bien raisonner sur des 
fi gures mal faites”—the art of 
reasoning well from ill-drawn 
fi gures?

These shapes seem so much 
more concrete than numbers 
do; yet just how elusive (remote Henri Poincaré (1854–1912)
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and at the same time pervasive) they are, a last excursion will 
show.

What if you asked—as the amateur mathematician Count 
Giulio Carlo de’ Toschi di Fagnano did in the 1700s—whether 
there was a triangle of shortest perimeter that could be inscribed 
in a given triangle: in effect, whether there is a least distance you 
could run and still touch each of the triangle’s three walls.

Would D to E, E to F, and F back to D be this shortest path?
The problem is interesting for many reasons. Logic says that of 

all possible paths there ought to be a shortest, but our intuition 
fails to tell us at once what the shortest path is—or even if there is 
a shortest (or if you are a formalist, whether the existence of such a 
path could be proved, even were the path itself not to be found). It 
is historically interesting also, because, like the two-faced Janus 
stones with which Romans once marked their frontiers, it looks 
both forward and back. Back, because “shortest distance” always, 
in Euclidean geometry, means “straight line,” which, along with 
“point,” is one of this geometry’s two most primitive concepts. 
Ahead, because all questions about minimizing anything, such as 
a path length, are chiefl y at home in the mathematics Euclid never 
dreamed of: calculus, which was the high point of seventeenth-
century invention.
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should be straight? The whole path couldn’t possibly be. It is at 
this moment that the spirit of Alcibiades awakes at its most 
pugnacious.
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falls 6 times short of 15, so you would have had to multiply 2 by 
6—and so get 12 again.

The geometric equivalent of positio falsa is to choose (as we did) 
any points D, E, and F on the triangle’s sides. Now for the fi rst of 
two world-class insights: think of sides AC and BC as mirrors and 
refl ect the point D in each of them, to X and Y, respectively, outside 
the triangle :

(“refl ect” means drawing a perpendicular from D to T on AC and 
then extending DT its own length to X—so X is the virtual image, 
through the glass, of D. Do the same thing with a perpendicular to 
U on BC).

Now connect X to our random point E, and F to Y, giving the 
zigzag path XEFY:

The reason for this bizarre maneuver is that XE is the same length 
as DE, part of our original, random, path: ΔTXE ≅ ΔTDE (by SAS: 
the shared side ET, the right angles, and the equal sides TX and 
DT), so EX = ED. Similarly, on the other fl ank, FY = FD. Hence 
XEFY is the same length as the path from D to E to F and back to D.
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Suddenly we see how to satisfy Alcibiades’s demand: if only 
XEFY were a straight line, it would be the shortest distance from X 
to Y—and therefore, so would the internal path it was refl ected 
from. This means we can abandon two of our three random 
choices, E and F, and for the arbitrary point D get a shortest path 
as follows.

Refl ect D in the “mirror” AC to X and in the “mirror” BC to Y; 
connect X and Y by a straight line. It will meet AC (at M) and BC 
(at N). Then D to M, M to N, and N back to D will be the shortest 
triangular path inscribed in the original triangle ABC—if we start 
at D.

Are we done? No, because although for a given D we now know 
where to fi nd the other two points, we don’t know where to station 
D along AB so that DMN will be the shortest of all possible paths. 
Or to put it in terms of a straight line: what choice of D will mini-
mize the length XY?

This is where the second world-class insight appears (from what 
heaven of invention?). It wasn’t Fagnano but Leopold Fejér whom 
the fi ery muse visited. He taught in Hungary in the early twentieth 
century but almost didn’t, his appointment having been opposed 
by anti-Semites on the faculty. One of them—knowing perfectly 
well that he had changed his name from Weiss—asked: “Is this 
Leopold Fejér related to our distinguished colleague in the Faculty 
of Theology, Father Ignatius Fejér?” The eminent physicist Lóránd 
Baron von Eötvös answered at once: “Illegitimate son.” Opposition 
ceased.

Copy Fagnano’s construction with the falsely positioned D, and 
add the lines CX, CD, and CY:
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You might think of the see-saw XY hung by CX and CY from the 
balance point C: for just as before (looking at congruent triangles 
ΔTXC and ΔTDC on one side, congruent triangles ΔUYC and 
ΔUDC on the other), CX = CD = CY.
XCY can’t change (it will always be twice the original C, 

made up of  ACD and  BCD; and  XCA =  ACD,  YCB =
 BCD), but CX and CY could shorten, in effect pulling up and 
shortening XY. How short can they get? Since each equals CD, it is 
just a question of when CD is shortest—and since the shortest 
distance from a point to a line is the perpendicular, this will be 
when CD is the altitude from C of ΔABC! So the inscribed triangle 
we fi rst called DEF will have the least perimeter when our contrived 
line XY is shortest, and XY is shortest when D is the foot of the 
altitude from C.

Since there was nothing special about C and side AB, the same 
will be true of the other two sides: E must be the foot of the alti-
tude from B and F the foot of the altitude from A: then D to E, E to 
F, and back again from F to D will be the minimal triangular path 
inscribed in ΔABC:
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So the minimal path was built into the triangle’s genetic 
code all along, a cousin of the altitudes whom we had just 
come to know. We discovered how to construct it by playing a 
game of positio falsa in our familiar old representative trian-
gle, ABC.

Yet how representative was that triangle after all? A sudden 
doubt: will our construction work if the triangle is obtuse? For 
then some of the altitudes would meet not the opposite sides but 
their extensions:

and clearly the path DEF fails to lie within ΔABC. In fact, with F as 
one of the points on the path, where could the other two possibly 
be? For every choice such as D and E—

we could get a shorter path by moving D and E closer to A:
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If we think of D and E as points on a number line, with A as 
zero, we know that for any choice we make we can always make A 
smaller—so there seem to be shorter and shorter but no shortest 
triangular path inscribed in an obtuse triangle (the path AF from 
the vertex A meets AC and AD at the same point, which only by an 
abuse of language fi ts our requirements). We have the same prob-
lem with a right triangle:

Since the feet of the perpendiculars are F and A, they give us no 
path save AF; and any other points chosen on AC and AB will slide 
together, approaching the single line AF as a limit, as they did in 
the obtuse triangle. This plausible argument isn’t a proof but 
points to one, which you will fi nd in the Appendix.

What we have just witnessed in solving Fagnano’s Problem is an 
encounter found everywhere in mathematics: arrogance coming 
up against the natural resistance of things. The problem is solved 
for all time in any of the infi nite kinds of acute triangle—solved by 
putting old objects in new arrangements. It is unsolvable for right 
triangles and the infi nite varieties of obtuse triangles (or should 
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Since it takes 360° to circle around a point, the answer will be
360
7 =51.428671°. Given the dimensions of the slices we could calcu-

late the heptagon’s area and the length of its perimeter. Yes—but 
that’s not the question. Can we in fact not sketch but construct it 
exactly with our two ideal tools?

This is where the mind begins to boggle: just how should we go 
about it, having no protractor? Even if we had one, the most deli-
cate hand in the world couldn’t capture the remoter digits of our 
endless decimal, which the arithmetic mind so easily gauges. There 
must be a way, but it doesn’t leap to the eye. Grown cautious over 
the course of the past fi ve chapters, we may even want to reserve 
judgment about whether there always is a way. Mathematics seems 
ever to teach us two lessons: there is no limit to our mind’s ingenu-
ity; and there is even less of a limit to the intransigence of the world.

Let’s begin our architectural work at the beginning and 
construct a regular (equilateral) triangle. Easy enough: since Euclid 
cares only for shape, not size, draw any length AB.

Now set your compass point at A, its pencil at B, and swing an arc:
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Reverse this process, putting the point at B, the pencil at A, and 
swing a second arc, meeting the fi rst at C:

Now use your straightedge again to draw in line-segments AC and 
BC. All sides, being radii of the same circle, are equal; hence ∆ABC 
is equilateral. With such an easy beginning, the rest of the regular 
polygons should tumble to our will like induction’s dominoes.

A square: from Chapter Five we know how to construct a line 
perpendicular to a line-segment at its midpoint—call it B:

Now swing an arc with center B and radius BA, meeting this 
perpendicular at C:
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To conclude, swing two arcs with radius BA and centers A and 
C, meeting at D; then with your straightedge construct AD and 
DC, completing the desired square.

This playing off of compass against straightedge made triangle 
and square so easy to construct that you feel there must be some-
thing here that will generalize from n to n + 1. What, therefore, 
does it tell us about the pentagon? A deafening silence is all the 
answer we hear.

Let’s make a strategic retreat and ask (as we did about the hepta-
gon) how many degrees would have to be in each of its “central 
angles” α (Greek letters for angles—as a tip o’ the hat to those who 
fi rst told us about them, and to avoid confusion with Roman 
letters for points and lines):

α= =72°. That looks more promising than what we got for a 
heptagon. If we could construct a 72° angle with straightedge and 
compass we could then iterate it four times around and so have 
our regular pentagon. (Since size doesn’t matter, any circle from 
the center would put points equally far along each spoke, and we 
would make the sides with our straightedge between adjacent 
points.)
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Shuffl ing around in the attic of insight we come on this thought: 
were we able to construct a regular 10-gon (decagon), we would be 
able to construct our pentagon, simply by joining together the 
decagon’s alternate vertices:

The central angle, α, of each slice of a decagon is 360
10

°=36°, and 
since we are interested in regular decagons, the base angles of each 
slice will be equal, hence the familiar (180 36 )

2
°− ° =72° each.

If we take the side lengths to be one unit long, our task is to 
construct the segment forming the base. Call its length t.
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If we could do that, then we would draw a circle with center O and radius 
1, choose any point A on its circumference and with radius t draw an arc 
intersecting the circle again at B. Doing this nine more times around the 
circumference would give us the points to join by straight lines, so 
making the decagon, and this in turn would yield our pentagon.

Yet how construct t? This is the moment no mechanism can rise 
to: only our prehensile minds. Imagine having our slice already 
constructed, and further imagine bisecting the angle at A, with a 
line meeting BO at D:

The 72° angle at A is now cut into two equal angles of 36°. ADB 
is therefore 180° – (36° + 72°) = 180° – 108° = 72°. If the base 
angles of a triangle are equal, so are the sides opposite them (by a 
proof identical in form to Pappus’s daring contrivance in the 
appendix to page 162), so AB = AD: that is, both are of length t.

But OAD = AOD = 36°, so by the same theorem applied to 
∆ADO, AD = OD: OD is also of length t.

Since OB = 1, the segment DB = 1 – t.
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Here is our ship sailing home: ∆OAB ~ ∆DAB since their corre-
sponding angles are the same. Hence their sides are in proportion:

long long
short short

=

In this case,

1 t
t (1 t)

=
−

,

the extreme and mean ratio!
Our task, however, is to construct the length t. How can we do 

this? It is now that algebra brings us its little formal touches, antic-
ipated so long ago in Egypt, to free the unknown.

Multiply both sides of this equation by (1 – t) and then by t, 
turning it into

1 – t = t2 .

Collect all terms on one side:

0 = t2 + t – 1 .

Now if we could only solve this quadratic equation in t . . . (you’ll fi nd 
two ways of solving quadratics in the Appendix), we’d discover that

( 5 1)t
2
−

= .

If we have a line segment, v, whose length is greater than 1 (and 
5  is greater than 1), we know geometrically how to subtract a 

length 1 from it:
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QR has length v – 1. So if we could construct a line-segment of 
length 5 , we could then construct another of length 5 1− . And 
since we are masters of bisecting line-segments, we could then 
make our segment t of length

( 5 1)
2
−

.

 

Hippasus Revisited
The Pythagorean world was shattered by Hippasus’s proof that 
there were numbers, such as 2 , which weren’t the ratio of whole 
numbers. Horrifi ed though Pythagoras must have been by the 
monstrous progeny of the simple straightedge and compass, might 
he (or we) not take comfort in the thought that regularity 
remained, but at one remove: the means for making these 
monsters—the Euclidean tools—were still ideally simple. A hidden 
regularity, revealed by reiterated applications of the Pythagorean 
Theorem, lies too among the offspring:
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Harmony has been restored to the world—not on the level of its 
objects but of their making.

But what if for some other polygon you needed 17 ? A slick 
way to do the 2nth root of any natural follows from similar trian-
gles and Thales. For in a right triangle ABC we can drop the 
perpendicular to the hypotenuse (meeting it at D). Two new trian-
gles are thus formed, similar to the original one and hence (by 
transitivity) to each other:

∆ADC ~ ∆ACB because each contains A and has a right angle. 
Likewise ∆ACB ~ ∆CDB (B in common and the right angle). 
Their paired sides are therefore in proportion:

AD DC
DC DB

= .

Since we know from Thales’s Converse (page 151) that a triangle 
inscribed in a semicircle is a right triangle, let’s construct a circle 
of diameter AB = 1 + 5 = 6, and on this diameter place D so that 
AD = 1 (our given unit length). Then DB = 5.

Erect a perpendicular to AB at D, meeting the circle at C; and draw 
AC and BC.
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Suddenly it becomes clear that we can construct a 12-sided poly-
gon (dodecagon) if we can bisect the central angles of the hexagon—

and indeed that we could have found the hexagon by bisecting the 
central angles of the triangle:

so if we could bisect an angle, every constructed n-gon would give 
us a 2n-gon for free—and angle-bisection falls readily to compass 
and straightedge. To bisect AOB, swing any arc with center O, 
meeting AO at P and BO at Q.
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Then with radius PQ and center P, swing another arc, and do the 
same with center Q; these two new arcs meet at R. OR is the bisec-
tor of AOB, since ∆ORP ≅ ∆ORQ: the paired sides are equal (a 
fourth way that Euclid establishes triangle congruence, called SSS).

What vistas this opens up! Now that we can bisect angles, the 
triangle will give us the hexagon, the hexagon the dodecagon, from 
that in turn the 24-gon, and so on—in fact, any member of the 
sequence 2n · 3. The square gives us all polygons with 2n · 4 sides, and 
now the pentagon all those with 2n · 5 sides. Infi nitely many regular 
n-gons are constructible, then—but the sophistication gained from 
Chapters Three and Four somewhat moderates our enthusiasm: 7, 
9, and 15, for example, don’t appear in any of these sequences, nor 
in fact do infi nitely many others. The story may not be quite over.

Since 15 = 3 × 5 and we can construct triangle and pentagon, 
perhaps a little tinkering with them will give us the 15-gon. In a 
circle with center O construct a regular pentagon ABCDE (easily 
said, and now, with craftsmanship, done):
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Then with radius PQ and center P, swing another arc, and do the 
same with center Q; these two new arcs meet at R. OR is the bisec-
tor of AOB, since ∆ORP ≅ ∆ORQ: the paired sides are equal (a 
fourth way that Euclid establishes triangle congruence, called SSS).

What vistas this opens up! Now that we can bisect angles, the 
triangle will give us the hexagon, the hexagon the dodecagon, from 
that in turn the 24-gon, and so on—in fact, any member of the 
sequence 2n · 3. The square gives us all polygons with 2n · 4 sides, and 
now the pentagon all those with 2n · 5 sides. Infi nitely many regular 
n-gons are constructible, then—but the sophistication gained from 
Chapters Three and Four somewhat moderates our enthusiasm: 7, 
9, and 15, for example, don’t appear in any of these sequences, nor 
in fact do infi nitely many others. The story may not be quite over.

Since 15 = 3 × 5 and we can construct triangle and pentagon, 
perhaps a little tinkering with them will give us the 15-gon. In a 
circle with center O construct a regular pentagon ABCDE (easily 
said, and now, with craftsmanship, done):
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Starting at A, and with the circle’s radius OA, move around the 
circumference marking off the points which would give the regu-
lar hexagon (see page 179):

Now from A connect every other vertex, a new and easy way of 
making the equilateral triangle AFG:

Draw OA, OB, OF, and OC. The central angle of the triangle, 
AOF, contains 120° and the central angle of the pentagon, AOB, 
contains 72°. So BOF = 120° – 72° = 48°. BOC is also 72°; that 
means FOC is 72° – 48° = 24°, the central angle of a 15-gon


since 24°=360

15
° 

 . CF is therefore the side of a regular 15-gon. Setting 

the compass to length CF and swinging around the circumference 
will give us the rest of the 15-gon’s vertices.
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and on it lay off three units. For convenience, let’s label the point 
marking zero A, the point at the end of those 3 units B, the point 
at 1 on the original line C, and the point at the end of 4 units, D.

Since two points determine a line, construct the line through C 
and B, and at D draw a line parallel to CB, meeting AB at E*:

These parallel lines make ∆ABC ~ ∆AED, so

3 AE
1 4

= .

Multiplying both sides by 4,

3 · 4 = AE = 12 .

This same canny device leads to division and therefore to seeing 
ratios (for a Pythagorean) or constructing rational numbers (for 
us): a length of 3

4 , say, follows from this arrangement:

* The easiest way to construct a line ´ through a point D, parallel to a given line , 

is to construct a perpendicular m from D to  and then a perpendicular ´ to m at D.
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Here we draw BD rather than BC, then CE parallel to it. Since 
∆ACE ~ ∆ADB,

AE 3
1 4

= .

That is, AE is 3
4 of a unit long.

This means we can now locate any positive rational a
b  on our 

number line. In the bliss of this dawn, and for the sake of what is 
to come, let’s continue our number line (page 184) leftward from 
0. The negative rationals will appear there as counterparts of the 
positives: – ab  will be the same length away from 0 as a

b , but in the 
opposite direction. These new points, of course, mark negative 
numbers as positions on the endless number line: we’re not talking 
about negative lengths.

Peacock would have been pleased: whatever we could do with 
the natural numbers extends now effortlessly to the integers and 
rationals, all of which—through the Adam and Eve of straightedge 
and compass—obey every law for fi elds on Weber’s tablets for 
Fields (page 48). We spoke of these numbers once as innocents in 
Eden but they seem more worldly here, standing about in their 
fi eld like the folk of Piers Plowman’s vision, which William 
Langland wrote fi ve centuries before Weber.

A fair fi eld full of folk I found

With all manner of men, the meaner and the richest,

Walking and wandering as the world demanded.

This multitude we used to call Q (the rationals); but with this 
vision in mind, let’s rechristen it F, for fi eld.
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Our aim is to fi nd out what can and can’t be made with 
Euclidean tools. Where are the irrationals? We have seen so recently 
how to construct 5  with straightedge and compass, yet it is 
nowhere here, neither among those who, as Langland said, put 
them to the plough and practiced hardship in setting and sowing, 
nor with those who practiced pride and quaint behavior, and came 
disguised in clothes and features.

Let us invite them in, as the Old Masters would bring saints and 
angels (only a little estranged by their lighting and bearing) into 
mortal discourse on their canvases. We simply construct (as on 
page 178) a line-segment of irrational length—let’s begin with 
that anchor of chaos, 2 —

and drop it in amidst all the rational lengths of F. There let it go 
forth and multiply, divide, add, and subtract with all those estab-
lished lengths and now with these new ones too, making every 
possible arithmetic combination. These will make up a new and 
larger fi eld, which contains F as a subfi eld: a “square root exten-
sion fi eld” of F, as it’s called, and written F[ 2 ]. Since this is our 
fi rst fi eld extension, we refer to it as F

1
:

1F F[ 2]= .

Notice that closure, which we dismissed in Chapter Two as almost 
infra dig, turns out to be what matters here: F

1
 is closed under all 

the arithmetic operations and square-rooting of 2 as well.
Every creature in this field will therefore have the two-part 

name a + b 2 —even though some may not at first seem 
to.“17” is 17 + 0 2  in disguise; “17 2 ” is 0 17 2+  when it is 
at home. And 

3 4 2
1 2
+
+ ? It takes a little clever encouragement to 

make it tell us its name. Multiply this quotient by 
(1 2)
(1 2)
−
−  and 

look what we get:
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3 4 2 1 2 3 4 2 3 2 8
1 21 2 1 2

5 2
1

5 2 :
1 1

+ − + − −
⋅ =

−+ −

− +
=

−
−

= +
− −

a is 5 and b is –1.
Although F

1
 contains everything in F and an infi nite number of 

other creatures besides—all of which we now see are constructi-
ble— 3  is not among them. Why not? Because 3 , like 2 , is 
irrational, so cannot lie in F. Nor can any arithmetic combination 
of rationals with 2  produce it (if in doubt, see the Appendix). 
That can’t stop us, however, from building 3  in now. Since we 
know we can construct 3 ,

we act as we did before and adjoin it to F
1
, to make the yet larger 

extension fi eld 2 1 2F F[ 3]. F= , that is, has all the rationals in it, along 
with 2 , 3 , and all possible arithmetic combinations of these, with 
more or less obvious examples, like 

3
4 + 3 ,

7 2
19

−–
4 3
13 , 2 . 3 = 6 ,

3 
2 , 

which we know we can construct.
Since we can construct the square root of any already 

constructed number by the semicircle method, the program is 
clear. Whenever we fi nd a number that was in a previous fi eld but 
whose square root wasn’t, adjoin this square root to the later fi eld, 
just as we have done, to make a new fi eld that will be the next link 
in our chain of fi elds—whose folk are constructible lengths. This 
means that if a number is in F or any square root extension fi eld 
of F, then we can construct a line segment of that length with 
Euclidean tools.
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How like the medieval notion of the Great Chain of Being this 
is! Any length in a square root extension fi eld has been brought 
into existence by straightedge and compass. If it lies in F, the 
length is rational; if in F

1
, it is an arithmetic combination of 

rationals and 2  (or people say, 1F F[ 2]= ); if in F
2
, of these and 

3  (that is, 2 1F F[ 3]= ). We continue like this every time we fi nd 
a rational whose square root is irrational yet lies in no previous 
fi eld ( 6  is irrational but belongs, as you saw, to F

2
, since 

6 2 3= ⋅ ; but 5 , for example, requires a new link). In 
harmony with the medieval conception, this chain is infi nitely 
long, since each prime has an irrational square root which—like 

3 —can’t be derived from combinations of rationals with the 
square roots of other primes. In the language of a medieval 
metaphor, F begets F

1
, which in turn begets F

2
 which is 1F [ 3]

—and so on:

1 2 1 3 2F F F[ 2] F F[ 3] F F [ 5]→ = → = → − → . . .

Is it awful or awesome that there are other links than these? 
For go back to F

1
, containing all the rationals and all the arith-

metic combinations with 2 . Another length we could make, 
which isn’t among them, is 2 , commonly called the fourth 
root of 2, or 4 2 .* We can construct it out of old material in the 
usual way:

We therefore need a new link, which is F
1
 with 4 2  adjointed; and 

then that will call up another, since now we can construct 8 42 2= ,
and then 16 2 , 32 2 , and in fact a link for each 2nth root of 2, 2n 2 . 

* Why is 
42 2= ? Whatever 2  is, it is a number which, times itself, is 2 . 

Four copies of it multiplied together will make 2 2 2⋅ =  = 2; hence 
42 2= .
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The same will be true for 4 3 , 8 3 , and so on, and the 2nth root of 
any prime.

Our vision is turning nightmarish: infi nitely long chains now 
hang down from each link of our infi nitely long chain:

. . .1 2 1 3 2

4 4 4
1,1 1 2,1 2 3,1 3

F      F F[ 2]      F F[ 3]      F F [ 5]   

                                                                       

              F F[ 2]          F F [ 3]          F F [ 5]

       

→ = → = → = →

↓ ↓ ↓

= = =

8 8 8
1,2 1,1 2,2 2,1 3,2 3,1

                                                             

              F F [ 2]        F F [ 3]        F F [ 5]

                                                                 

↓ ↓ ↓

= = =

↓ ↓
16 16 16

1,3 1,2 2,3 2,2 3,3 3,2

   

              F F [ 2]        F F [ 3]       F F [ 5]

↓

= = =

The bookkeeper closeted in every brain clutches his forehead 
and cries out, “How shall I ever arrange all these in order?” We’ll 
mail him the astonishing directions in Chapter Nine. What matters 
here is that we don’t require his skills: these fi elds needn’t be stood 
to attention before our undertakings, but can be marshalled on 
demand to suit our needs.

Say, for example, that you have to construct an awkward length 
such as 745 ⋅ 32 5 − 14

3
 
 
  19 ⋅


. To start with, we know that 745 and 14
3  

lie in Q, our base fi eld F. Suiting our actions to our needs, let’s fi rst 
adjoin 5  to F, so that this time around F

1
 will be F[ 5] . We need 

to work our way down to 32 5 : F
1,1

 will be F
1
 [ 4 5 ], F

1,2
 will be

8
1,1F [ 5] , F

1,3
 will be 16

1,2F [ 5] , and fi nally F
1,4

 will be F1,3 [ 32 5 ].
Now all we need do is adjoin 19 , so this time 2 1,4F F [ 19]= —and 
it is in this F

2
 that the required length can be constructed. What 

happened to 2  and 3 , you might ask, and 7 , 11 , 13 , and 
17 ? We never needed them, and therefore built this chain of 

extensions from F without them. So a carpenter, with his templates 
and tools laid out in order, need only choose this one or that for 
the job at hand; he doesn’t have to run through them all.

Lest you think, by the way, that every possible real number lies 
in some square root extension of F, notice that some don’t: 3 10  
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The words “plane” and “fi eld” call up such similar images that 
you might think every point of the fi rst belonged to the second. 
But keep in mind that the coordinate plane contains every single 
point that has real coordinates, while our square root extension 
fi elds are as exclusive as the parklands of great estates. You could 
think of it this way. The fi eld of rationals, F, lies like a transparency 
on the Cartesian plane, with points all over it, corresponding to 
points with rational coordinates. ( 3

2 , 8
3
− ) is on it, but neither ( 3

2, 2 )
nor ( 3

2 , ). The extension fi eld 1F F[ 2]=  is a second transpar-
ency, with all the points of the fi rst and now many more—all those 
that have at least one coordinate with a 2  in it. ( 3

2 , 2 ) is here, 
but 3

2 ,  is still missing. In fact, ( 3
2, ) won’t be in any of the 

subsequent transparencies corresponding to links in the chain 
shown on page 190.

Nevertheless, the luxury of the coordinate plane will soon prove 
a necessity to us, and the power of algebra will lift us up above fi eld 
after fi eld, to see their ordered array. For it will let us fi nd the form 
common to all points on a given line, and in particular a line 
through two points in one of our fi elds, and then the form common 
to all points on another such line. This will let us see the form of 
the one point on both lines—their point of intersection—and 
discover that it must have the form of a point in the fi eld. We will 
do the same for a circle, then for its intersection with another circle 
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or line built in the same fi eld; and those points they have in 
common (their intersections) will turn out to be either in that 
fi eld or in a square root extension of it. This will bring our strate-
gy’s second phase to an end, showing that our criterion was all we 
had hoped for: precisely those points that lie in F or some square 
root extension fi eld of it can be constructed with Euclidean tools.

“The form of all points on a line”: what does this mean? Not 
their visual form, which dots, no matter how small, approximate, 
so badly, but the form which is exact because abstract: their numer-
ical coordinates (so far has our thought evolved from Chapter 
One). We want to be able to derive these coordinates from those of 
the two points the line was originally drawn through.

Take for example the line through the points (2,6) and (4,12). 
What form have the coordinates (x,y) of any point on this line in 
terms of 2 and 6, 4 and 12?

We notice for a start that this line rises steadily, with a constant 
slope—call it m—which is described by how far it moves vertically 
over a given horizontal stretch:

risem
run

= .

Since the vertical distance is the difference in the y-coordinates, 
and the horizontal the difference in x-coordinates,

(12 6) 6m 3
(4 2) 2

−
= = =

−
.
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Hence the y-coordinate of any point on this line will be three times 
its corresponding x-coordinate:

y = 3x .

This particular line goes through the point (0,0). Any other line 
parallel to it must have the same slope, m = 3, but the y-coordinate 
of a point on it will be increased or decreased from y = 3x accord-
ing to where such a line passes through the y-axis. The parallel line 
passing through (0,2), for example (2 units above our original 
line), will have points whose y-coordinates are given by

y = 3x + 2 .

The parallel through (0,–3) will give us

y = 3x – 3 .

In general, then, the y-coordinate of any point (x,y) on a line 
with slope m, which intersects the y-axis at k, will be

y   mx       k.
                  

= +

↑ ↑
       slope     y-intercept

Now let’s apply these results to any two points with coordinates in 
our fi eld. Call these points (a,b) and (c,d). We can calculate m by 
taking the difference in y-coordinates (d – b) over the difference in 
x-coordinates (c – a):

9781608198696 The Art of the Infinite (836h).indd   1949781608198696 The Art of the Infinite (836h).indd   194 04/02/2014   20:31:5804/02/2014   20:31:58



The Eagle of Algebra

195

m
 

.

You might be tempted to interrupt, saying that we’re just lucky 
to have natural numbers for our initial coordinates: instead of a, b, 
c, and d we could have had rationals like r

s  in F, or hideous combi-
nations in a square root extension fi eld: a could have been r

s + t 2
u , 

and c, d, and e as bad. What an atrocious mess m would then be! 
But even were such intricacies lovely, dark and deep, the promise 
we have to keep is simply to show that two lines through points in 
a fi eld intersect in another point of the fi eld, and we still have some 
way to go. Benign neglect is called for here to avoid being side-
tracked: a sort of blessed ignorance in which mathematics (which 
would know all things) thrives. What we care about is that m arises 
through some arithmetic combination of elements in the fi eld; in 
this case, we have used subtraction and division. Let a, b, c, and d 
therefore stand for whatever those elements are; we need look no 
more closely in order to gain our end.

We now have

d b x k
c a

                     

y − = ⋅ + − 
↑ ↑

       slope     y-intercept

and need to express k also in terms of our original four coordi-
nates. We do this simply by turning the game around on itself (will 
the upcoming manipulations be exhausting or dreary? Neither: 
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A fi rmer application of algebra will tell us the answer, since its 
aim is to extract the unknown from whatever circumstances it 
fi nds itself in. This is no trivial aim: “All the business of life,” said 
Napoleon’s conqueror, the Duke of Wellington, “is the endeavour 
to fi nd out what you don’t know by what you do; that’s what I call 
‘guessing what was at the other side of the hill.’ ”

Our hill here has y = mx + k on one side of it, y = nx + g on the 
other. We are interested in the point (x,y) at the crest, where these 
two lines meet. It is the same point (x,y) on both lines, so that y = 
y; by transitivity,

mx + k = nx + g .

We want to fi nd out the unknown, x, in terms of what we know: m, 
k, n, and g. Well,

mx – nx = g – k

so

(m – n)x = g – k

and

g kx
m n
−

=
−  .

This is just an arithmetic combination of elements in the fi eld, so 
x must be in it as well; and we have already seen that if x is on a 
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line derived from our fi eld, so is the y coordinated with it. The 
point made by intersecting two lines of the fi eld lies in the fi eld 
too.

We’ve now found that the form of a line is approximately

but is exactly   y = mx + k.
We next need to fi nd the exact form of a circle. Our thanks for 

this go back through Descartes and Fermat to Pythagoras, since his 
theorem holds the key to its equation.

Say we have a circle of radius 2 with its center at (0,0) and want 
to know how the x- and y-coordinates of any point on it are 
related. As you (wearing the spectacles of Pythagoras) see in the 
drawing,

x2 + y2 = 22

that is

x2 + y2 = 4

or

2y 4 x= −  .

The adjustment is easy should the circle have radius r instead 
of 2:
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x2 + y2 = r2

or

2 2y r x= − .

The fi nal modifi cation displaces the circle’s center from (0,0) to 
some other point (h,k) on the plane:

Now the circle’s equation is

(x – h)2 + (y – k)2 = r2

so

(y – k)2 = r2 – (x – h)2

which gives us

y – k = 2 2r (x h)− −
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or

y = k + 2 2r (x h)− − .

This is the algebraic form of a circle. It is the form latent in all 
the circles drawn in sand, on paper, or on your thigh. Without 
sweating any details we see that if x, r, h, and k lie in some square 
root extension fi eld F

i
, y will lie in at worst the next link from it.

Now we can take on the intersection of a circle and a line that 
both arise from some F

i
. We hope that what points they have in 

common are in F
i
 too, or in a square root extension link from it.

Because the equation for a circle is more complicated than that 
of a line, the tactics for doing this will be more intricate than they 
were when we looked at the intersection of two lines—but the 
strategy remains exactly the same: to show that whatever happens, 
no more than arithmetic combinations and square rooting will be 
involved.

Our circle is (x – h)2 + (y – k)2 = r2.
Our line is y = nx + g.

By transitivity (in the specifi c form of substituting the second 
expression for y into the fi rst equation),

(x – h)2 + (nx + g – k)2 = r2.

Whatever we will now do to free x from its entanglements, we 
won’t go beyond adding, multiplying, subtracting, dividing, and 
taking square roots.

Like the sons of King Gama in Gilbert and Sullivan’s Princess 
Ida who found their armor too heavy, we begin to remove the parts 
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If you have been dreading the fi nal case—the points where two 
circles intersect—have no fear, but put yourself far enough above 
the battle to enjoy it; or succumb to the song of the sirens that 
invited Odysseus to their remote island:

Here may we sit and view their toil

That travail in the deep . . .

This travail is to solve “simultaneously,” as timeless algebra so 
coyly puts it, the two equations

(x – h)2 + (y – k)2 = r2

and

(x – j)2 + (y – q)2 = s2

for the points (x,y) that are common to both.
Expand each equation, subtract the second from the fi rst, care-

fully collect like terms together (as we did on page 201) and 
discover the form of a line hiding here:

2 2 2 2 2 2h j r j q s h k
y x  .

q k 2(q k)

 − + + − − −= ⋅ + − − 
↑↑

����������������

slope y-intercept

A line? Where did that come from?
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It is the “common chord” of the two circles, passing through their 
points of intersection; its constants (h, j, q, k, and their arithmetic 
combinations) lie wholly within the fi eld we began with. So we are 
in the very situation we found ourselves in before, looking for the 
intersection of a line with a circle (here either circle)—and can 
confi dently declare that we know those intersections will lie in that 
fi eld or a square root link from it.

We are done. It has been like an exhilarating three-mile 
run—uphill. What we come away with is the certainty that 
the algebraic form of whatever we can construct with Euclid’s 
tools has as its components only rationals and their 2nth 
roots. You won’t find cube roots, fifth roots, or such there 
(unless, exceptionally, one of those was a square root all 
along—as 3 8 4= ; or masquerades as a more complicated 
member of a square root extension field. So for example 
3 7 5 2+  is 1 + 2  in disguise). Now we see from aloft what 
we saw close at hand before: the pentagon could be constructed 
precisely because the lengths of the five sides involved noth-
ing more exotic than 5 .

 

It was Gauss—once again Gauss, whose name runs through the 
last two centuries of mathematics like Louis Armstrong’s through 
the evolution of jazz—who on March 30, 1796, when he was still 
eighteen, discovered how to construct the 17-gon. No one had 
seen a way, or was even sure that it could be done, in the two thou-
sand years of thinking about it before him.
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We are left with a puzzle—it may even be a problem—about the 
-ible in “constructible”: able how, when possible in theory but not 
in the physical world? Existing how, with singular points and 
special properties, when not even constructible theoretically? 
Embodied how, on the abstract Euclidean plane, when deposited 
there (as the heptagon is) by means less fundamental than 
Euclid’s—such as marked straightedges slid along sophisticated 
curves? And does the ancient conviction echo here that thoughts 
are as real as or even more real than deeds (so that either might 
have been In the Beginning, and sinful thoughts now must as 
much be atoned for as sinful acts)? Or do constructions and 
constructing belong to the imagination, that messenger between 
the world and the mind, beholden to neither?
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complex plane promises symmetry too, satisfying that old mathe-
matical itch so well described by William Rowan Hamilton:

The algebraicist complains of imperfection, when his 

language presents him with an anomaly; when he fi nds an 

exception disturbs the simplicity of his notation, or the 

symmetrical structure of his syntax; when a formula must be 

written with precaution, and a symbolism is not universal.

Here is a striking sort of anomaly rectifi ed on the complex 
plane. On the real plane, those quadratic functions we once had so 
much to do with come in three varieties. Roots—places at which 
the value of the function is zero—lie, naturally enough, on the 
x-axis, where y = 0. Some quadratics don’t touch the x-axis at all, 
like f(x) = x2 + 3; some at one place, like f(x) = x2 – 8x + 16, whose 
only root is 4; and some in two places, and so have two roots, like 
f(x) = x2 – 5x + 6, whose roots are 2 and 3.

 f(x) = x2 + 3 f(x) = x2 – 8x + 16 f(x) = x2 – 5x + 6

Cubic functions can have one, two, or three roots, but the shape of 
their graphs forbids their having none.

 f(x) = x3 – x2 + x – 1 f(x) = x3 – x2 – 8x + 12 f(x) = x3 – 2x2 – 5x + 6
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Quartic functions can have no, one, two, three, or four roots,

 f(x) = x4 + 7 f(x) = x4 + 4x3 + 6x2 + 4x + 1 f(x) = x4 – 3x2 – 4

 f(x) = x4 – 9x2 + 4x + 12 f(x) = x4 – x3 – 7x2 + x + 6

and so on for higher degrees, needing a Linnaeus to classify them 
all. But if we allow complex roots, quadratics always have two, 
cubics three, quartics four—and nth degree polynomials always 
have n complex roots.* This truth (once again, proved by Gauss) is 
so important that it is called the Fundamental Theorem of Algebra. 
Roots are buried all over the complex plane, there for our 
extracting.

Is unreality the price we must pay for this tidying up? You have 
already heard the square roots of negative numbers called impos-
sible as well as imaginary; but John Wallis, who had never studied 
math formally before he became Savillian Professor at Oxford in 

* This is counting “multiplicities”: if the same factor occurs twice, for example, 

in the polynomial, it is thought of as having two roots—or one root of multiplic-

ity two—at that point. So x2 – 8x + 16 = 0 has a root of multiplicity 2 at x = 4, 

since it is (x – 4)(x – 4) = 0 in disguise.
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Very dubious—but look what happens when we test it: if this crea-
ture really is the square root of i, then squaring it should give us i:

It does! And if a = 2
2

− , then again, since b = a,  b will be 2
2

−  also.
Is ( 2

2
−  – 2

2
i) another square root of i?

2 2
2 2

 −
−



2 2 1 1 1 1i i i i i
2 2 2 2 2 2

  −
⋅ − = + + − =    
  

.

Two square roots—just as the Fundamental Theorem of Algebra 
predicted.

Alcibiades’s gamble has paid off: no contradiction, but instead two 
complicated as well as complex square roots of i stand revealed. The 
fi rst person to see that any algebraic operation on the complex 
numbers left them closed was 
Jean le Rond d’Alembert in 
1747—a man who, although his 
life was polarized, was convinced 
that all knowledge was unifi ed. 
He had been abandoned by his 
unmarried socialite mother on 
the steps of St. Jean-le-Rond in 
Paris and raised by a poor 
glazier’s family. His noble father 
later paid for his education, but 
d’Alembert kept his allegiance to 
his stepparents. If this timeless 
story leads you to think that now 
and then or here and there are 
the same, consider how strange D’Alembert (1717–1783)
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past styles and customs seem to us: the work in which d’Alembert 
proved his result was his “Refl ections on the General Cause of Winds.”

A broader revelation comes with our two roots of i: their wholly 
unexpected (counter-intuitive?) form means that the terrain 
hasn’t yet fully coalesced, having been—as a historian says of 
Virginia—an idea before it was a place. If you fi nd yourself in a 
country “fained by Imagination” (Virginia as described by Sir 
Humphrey Gilbert), the solution is to let imagination do what 
fantasy cannot: focus in on detail, so that we can end up navigating 
as confi dently as we do in the reals.

Algebra helped geometry in the last chapter: here geometry will 
repay the debt. Since addition of complex numbers was straight-
forward, let’s see what it looks like on the complex plane which we 
fi rst saw on page 33, looking just like the real plane, but with the 
y-axis occupied by imaginaries. How did the ingenious Wallis 
come up with that image? He realized that i was the mean propor-
tional between 1 and –1, because

2

1 x
x 1

x 1
x i

=
−

= −
=

and therefore, like the mean proportional we constructed on page 
179, should rise perpendicular to the real number line, halfway 
between 1 and –1.

We were adding (3 + 2i) + (4 – 5i)—but where are these two 
numbers? We have the point (3,2) standing for the pair “3 of the 
reals, 2 of the imaginaries”—
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but how should we represent the one complex number 3 + 2i?
Once again, the simplest inventions often have the most 

profound consequences. In order to appreciate this one, savor the 
childhood revelation of one of our leading mathematicians, 
William P. Thurston. In the fi fth grade he realized to his amaze-
ment that the answer to 134 divided by 29 was 134

29 . “What a tremen-
dous labor-saving device!” he later wrote. “To me, ‘134 divided by 
29’ meant a certain tedious chore, while 134

29  was an object with no 
implicit work. I went excitedly to my father to explain my major 
discovery. He told me that of course this is so, a

b  and a ÷ b are just 
synonyms. To him it was just a small variation in notation.” 
Looking at one thing in two ways—here Euler simply set the two 
expressions equal: he let the point (3,2) on the complex plane 
stand for the complex number 3 + 2i. So small a step over so deep 
a chasm. Here then are 3 + 2i, 4 – 5i, and their sum, 7 – 3i:

This picture doesn’t seem to tell us anything. Try another: (2 + 5i) 
+ (8 + 3i) = 10 + 8i:
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Again, neither Cassiopeia nor Orion shapes itself from these stars. 
Perhaps we have been spoiled by the constellations we found in 
Chapter Five, and the skeptic who walks in every optimist’s shadow 
will rightly now step out into the sun.

It took a Norwegian surveyor to fi nd the sight-lines. In 1797, 
Caspar Wessel—modest, self-taught, barely able to scrape a living 
from the maps he made of towns and coastlines and islands—
published his paper “On the Analytic Representation of Direction; 
an Attempt.” Why not think of these islanded points as the ends of 
arrows shot out from the origin, (0,0): directed line-segments, that 
is—or vectors, as we now call them. This is an idea that would 
come naturally to a sailor and chart maker thinking of the differ-
ent forces of wind and current on a ship. An image begins to 
develop. Our fi rst sum now looks like this:

The same urge to symmetrize that we’ve felt again and again—
the urge to complete the picture, the child’s delight in connecting 
the dots—comes on us here: we sketch in the two missing lines 
that are longing to be found:
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A parallelogram whose long diagonal is the sum! Has this homely 
shape, that played so important a part in Chapter Five, come to 
our aid far from home—or was it just a coincidence here? Examples 
may prove nothing but they do strengthen resolve, so let’s try it 
again with (2 + 5i) + (8 + 3i):

Once more it works! It must: adding (a + bi) to (c + di) means 
moving the fi rst arrow, parallel to itself, a units over and b units up, 
so that its tail begins at the head of the second: and this gives us 
our parallelogram. Again, this is a notion congenial to anyone 
working with charts and the parallel rulers that transfer bearings 
from the compass rose to bearings from one’s location.

And subtraction? Here, with Wessel’s arrows, is (3 + 2i) – (4 + 
5i) = –1 –3i:

No parallelogram leaps to the eye. Yet something here is waiting to 
be born. If you draw the line connecting the fi rst two arrowheads, 
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it looks, oddly enough, parallel to and the same length as the arrow 
of their difference:

Perhaps this isn’t so odd after all, if you think about what subtrac-
tion means: (a + bi) – (c + di) = (a + bi) + (–c – di). Once we locate 
–c – di, our parallelogram incarnation of addition will give us the 
vector we want, with –c – di the same length as c + di but pointing 
180° away from it. Hence the sum arrow of (a + bi) and (–c – di) 
will be parallel to the other diagonal of the parallelogram made 
from (a + bi) and (c + di):

You might have thought that so stunning an insight as Wessel’s 
would have been fl ashed around the world on the mathematical 
telegraph—had there been one. Instead, word from Norway 
languished in Scandinavia for a hundred years, during which time 
Wessel was knighted for his contribution to surveying. But in 1806, 
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a self-taught Swiss bookkeeper named Jean Robert Argand redis-
covered the idea (and so, inevitably, did Gauss in 1831). Why are 
these parallelograms now universally known as Argand diagrams? 
Perhaps because Argand’s name came into such prominence when 
arguments raged over the validity of his fi gures. Servois—the man 
who coined the terms “commutative” and “distributive”—insisted 
that what was algebraic must be dealt with algebraically. The 
movement of Argand’s thought from algebra to geometry, of 
Wessel’s from geometry to algebra, shows once more how central 
to mathematical invention is fetching from afar (the analogue of 
metaphor in poetic invention).

We can now move about the complex plane as blithely as a 
summer visitor. How will multiplication look? (3 + 2i) · (4 – 5i) = 
22 – 7i :

This is perplexing. Another example may shake our confi dence 
further: (2 + 5i) · (1 + 2i) = –8 + 9i.
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What is the product arrow doing so far away from those of its 
components? We seem to be faced with a truth we have 
confronted before: multiplication isn’t some sort of shorthand 
for addition.

Now, however, we have accumulated enough experience to be 
sure that problems will have solutions—but to be sure as well 
that the way to them may be intricate. Finding the solution will 
show what multiplication “means”—and the intricacy of fi nding 
might make the pleasures of mathematics even more meaning-
ful. For certainly what the twentieth-century mathematician 
Paul Halmos once said is true: “The major part of every mean-
ingful life is the solution of problems.” Not only is life, and the 
life of our imagination, thus enriched, but the world changes in 
ways we have yet to fathom. Hilbert once said: “There is the 
problem. Seek its solution. You can fi nd it by pure reason, for in 
mathematics there is no ignorabimus [we shall not know].” 
Answering Hilbert’s call brings into existence numbers no longer 
imaginary, and constructions that dovetail with those of ancient 
reality.

An important step in visualizing how complex numbers add 
was rethinking the point (a,b) on the complex plane as a + bi, 
and then once again as a vector: an arrow from the origin. Yet 
another metaphor will carry the nature of multiplication across 
to us.

Look fi rst, in our troubling diagrams for multiplication, at the 
lengths of the arrows. For 3 + 2i, the arrow is the hypotenuse of a 
right triangle:

so its length is 2 22 3 13+ = . For 4 – 5i we have
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and the arrow’s length is 2 24 5 41+ = .
The arrow of the product of 2 + 3i and 4 – 5i—namely, 22 –7i—

has length 2 222 7 533+ = .*
In other words, for the complex number a + bi the length of its 

vector is 2 2a b+ . This real number is called its modulus.

* Why does 13 41 (13 41)+ = × ? Why, in general, is a b ab= , if neither a 

nor b is negative? The full answer relies on Dedekind Cuts and how to multiply 

them. An example such as 4 9 2 3 6× = × =  and 4 9 36 6× = =  makes it 

reasonable to expect that the general rule holds.
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We have seen a2 + b2 before, on page 213. It is the number Bombelli 
came up with in making sense of division: the product of a complex 
number a + bi and its yoke-mate a – bi, called, therefore, its conju-
gate. What would Pythagoras have thought about his theorem 
reappearing to make sense of numbers so very remote from his 
own?

Now observe: 13 × 41 = 533: so 13 41 533× = . For complex 
numbers, the modulus of the product is the product of the moduli! 
If this fails to reverberate harmoniously then look at this 
fl ow-chart:

2 2 2 2 2 2

(a bi) (c di) (ac bd) (ad bc)i
                                                        
   modulus      modulus                          modulus

 a b     c d            (ac bd) (ad bc)

           

+ ⋅ + = − + +

↓ ↓ ↓

+ ⋅ + − + +

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

                                                  

a c a d b c b d a c a d b c b d

↓ ↓

+ + + = + + +

Half of our mystery is solved: we now understand—as Wessel 
and Argand and mathematicians like Euler before them did—the 
length of the product vector. But exactly where has this vector 
swung around to? Swung around: we can only come to grips with 
swinging in terms of angles. It was Euler who did this by whee-
dling from complex numbers the fourth of their names. He looked 
again at the line-segment from (0,0) to (a,b)—let’s call its length 
r—and saw it as rotated counterclockwise from the horizontal by 
a certain angular amount φ (Greek letters once more for angles—
this time phi):
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The length r and that angle φ determine the segment’s end-
point as surely as do the coordinates (a,b), so he could now rethink 
a + bi in terms of r and φ:

a + bi = (a,b) = (r,φ) .

We know how to derive the modulus r from a and b: 
2 2r a b= + . But how can we derive the angle φ? The way passes 

through the parkland of trigonometry (first cultivated by such 
Alexandrian mathematicians as Hipparchus, Menelaus, and 
Ptolemy two thousand years ago): a charming landscape, once 
you become familiar with its features. Here are a few pages 
from the guide to its flora and fauna. Keep in mind that our 
aim is to grasp the multiplication of complex numbers all at 
once: seeing it; and that angles will play an important role in 
this seeing.

The story is once again Pythagorean in spirit. As a line-segment 
of a fi xed length—let’s simply make it 1—rotates counterclock-
wise from horizontal to vertical, it draws right triangles up with it, 
whose vertical sides grow in length from 0 to 1:

This is where sin enters math, as an abbreviation for sine (from the 
Latin sinus, for gentle curves from bend of bay to your brow’s fore-
castle). The sine of angle φ, sin φ, is just the ratio of this opposite 
side’s length to that of the hypotenuse:

oppositesin
hypotenuse

φ = .

Since the hypotenuse here is 1, the opposite side’s length in our 
triangle is just sin φ. So sin 0° = 0, sin 90° = 1, and sin 45° =  2

2 , 
since both legs are equal and their squares add up to 1.

9781608198696 The Art of the Infinite (836h).indd   2269781608198696 The Art of the Infinite (836h).indd   226 04/02/2014   20:32:0304/02/2014   20:32:03



Into the Highlands

227

Any value of sin φ for φ between 0° and 90° can be fi gured out with 
more or less effort (your pocket calculator will do at once what cost 
men of the Renaissance, like Copernicus, hours and eyesight). The 
results produce a curving graph like this, when we relabel our axes 
from x and y to the angle φ plotted horizontally, and sin φ vertically:

As φ goes on from 90° to 180° the side opposite φ decreases from 1 
to 0 in the same way and at the same rate that we saw it grow:

And if you attend to the plusses and minuses in the next two quad-
rants (180° to 270°, then 270° to 360°) and attach the relevant sign 
to the side-length, the graph of sin φ will go on to look like this:
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When you increase φ beyond 360° the pattern will repeat 
exactly (so sin 370° = sin (360° + 10°) = sin 10°, for example), 
giving us the sine waves that once dazzled adolescents on their 
basement oscilloscopes, before the Internet took them 
upstairs:

The side adjacent to φ will change as the opposite side did, but 
in reverse: shrinking from 1 to 0 as φ increases from 0° to 90°.

The ratio of this side’s length to the hypotenuse is called cosine φ:

adjacentcos
hypotenuse

φ =
 
;

so that here, where the hypotenuse is 1, the adjacent side is just cos 
φ. The graph of cos φ is the same shape as that of sin φ, but shifted 
left by 90°:
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Looked at together, these two trigonometric functions braid perfectly:

The braiding is even more apparent to the mind’s eye focussed by 
Pythagoras:

sin2 φ + cos2 φ = 1 .

Now we see how to relate the angle φ to our coordinates a and b on 
the complex plane: If the modulus is 1, a is just cos φ, and b is i sin φ:
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If the triangle is scaled up or down by a modulus r, each of its 
lengths is multiplied by r, and

a = r cos φ    b = r i sin φ.

What was (a,b) is now (r cos φ, r i sin φ), so

a + bi = r cos φ + r i sin φ

or more economically,

a + bi = r (cos φ + i sin φ) .

“Mathematicians are like Frenchmen,” Goethe once said; “what-
ever you say to them they translate into their own language and 
forthwith it is something entirely different.” Nothing is sacred. 
Here they have even translated from one of their own languages 
into another.

We now have almost all we need in order to make visual sense of 
multiplying two complex numbers, a + bi and c + di, together. c + 
di will have its own modulus—let’s say s—and its own angle, theta: 
θ. So

a + bi = r (cos φ + i sin φ) ,

c + di = s (cos θ + i sin θ) ,

and (a + bi) · (c + di) now becomes

r (cos φ + i sin φ) · s (cos θ + i sin θ) = r · s (cos φ + i sin φ)(cos θ + i sin θ).

Look! We see here what we saw before: the modulus of the product 
will be the product of the moduli. But what about those terms in 
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parentheses? Carrying out the multiplication, being good about 
our bookkeeping and bearing in mind that i2 = –1, we get the 
mantic

cos φ cos θ + i cos φ sin θ + i sin φ cos θ – sin φ sin θ .

Collecting real terms together at the front and the terms with i in 
them after, this becomes:

(cos φ cos θ – sin φ sin θ) + i (cos φ sin θ + sin φ cos θ)

so that altogether,

(a + bi) (c + di) =

rs [(cos φ cos θ – sin φ sin θ) + i (cos φ sin θ + sin φ cos θ)] .

This is neater, but certainly not very neat; and no dazzling 
insight leaps from it to our minds. Beauty is truth, truth beauty, 
and both are mathematics. Something must be done about that 
clumsy, prowling quadruped.

The first thing to do is cage it. Let’s take the triangle repre-
senting c + di, with angle θ, and move it temporarily to the real 
plane, so we can ignore the fact that its vertical side is in units 
of i, and call its length simply d. While we are at it, let’s consider 
its modulus, s, to be 1. We’ll bring back s and i after these 
simplifications have shown us the structure behind the 
symbols.

Now rotate the entire triangle counterclockwise by the angle φ 
belonging to the triangle for a + bi:
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We’ll want to refer to this triangle’s sides from time to time, so 
label its vertices O, A, and B as here, and prop it up with a vertical 
line-segment from A, meeting the x-axis at C.

Finally, let’s package our construction in a rectangular box:
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How long is AC? Since ∆OAC is a right triangle with hypotenuse 
cos θ, and sin φ = opposite

hypotenuse = AC
cos θ , solving for AC gives us

AC = sin φ cos θ,

and a tense stillness passes through our tiger.
By the same reasoning, cos φ = adjacent

hypotenuse = OC
cos θ , so

OC = cos φ cos θ.

We need two more lengths: AE and BE. Since C is a right angle 
and AOC = φ, OAC = 180° – (90° + φ) = 90° – φ.

But OAB is also 90°, and since EAC is a straight angle (180°), 
BAE = 180° – ((90° – φ) + 90°) = φ.

In ∆ABE, therefore, sin φ = opposite
hypotenuse = BE

sin φθ , so

BE = sin φ sin θ;

and cos φ = adjacent
hypotenuse  = AE

sin φθ , hence

AE = cos φ sin θ.
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Why have we been playing musical chairs with these line-
segments? For the sake of our long-sought insight. If you now 
drop a perpendicular from B, meeting OC at F,

then ∆OBF has an angle at O of θ + φ, and sin(θ + φ) = BF
1  = BF, and 

cos (θ + φ) = OF
1  = OF.

But BF = EC = cos φ sin θ + sin φ cos θ, while OF = OC – FC = OC 
– BE = cos φ cos θ – sin φ sin θ: so that—gazing through the bars—

cos (θ + φ) = cos φ cos θ – sin φ sin θ

sin (θ + φ) = cos φ sin θ + sin φ cos θ.

When we substitute these telling expressions for their mute 
equivalents on page 231 we have:

(a + bi) (c + di) = rs [cos (θ + φ) + i sin (θ + φ)].

The two terms added up in the brackets mean that to reach the 
point represented by (a + bi) · (c + di), we have swung through (θ 
+ φ) degrees and travelled rs from the origin. In other words, to 
multiply two complex numbers graphically, on the complex plane, 
multiply their moduli and add their angles!

9781608198696 The Art of the Infinite (836h).indd   2349781608198696 The Art of the Infinite (836h).indd   234 04/02/2014   20:32:0404/02/2014   20:32:04



The Art of the Infi nite

234

Why have we been playing musical chairs with these line-
segments? For the sake of our long-sought insight. If you now 
drop a perpendicular from B, meeting OC at F,

then ∆OBF has an angle at O of θ + φ, and sin(θ + φ) = BF
1  = BF, and 

cos (θ + φ) = OF
1  = OF.

But BF = EC = cos φ sin θ + sin φ cos θ, while OF = OC – FC = OC 
– BE = cos φ cos θ – sin φ sin θ: so that—gazing through the bars—

cos (θ + φ) = cos φ cos θ – sin φ sin θ

sin (θ + φ) = cos φ sin θ + sin φ cos θ.

When we substitute these telling expressions for their mute 
equivalents on page 231 we have:

(a + bi) (c + di) = rs [cos (θ + φ) + i sin (θ + φ)].

The two terms added up in the brackets mean that to reach the 
point represented by (a + bi) · (c + di), we have swung through (θ 
+ φ) degrees and travelled rs from the origin. In other words, to 
multiply two complex numbers graphically, on the complex plane, 
multiply their moduli and add their angles!

9781608198696 The Art of the Infinite (836h).indd   2349781608198696 The Art of the Infinite (836h).indd   234 04/02/2014   20:32:0404/02/2014   20:32:04



The Art of the Infi nite

236

the polynomials, familiar from Chapter Six, when spun out into 
infi nite series like those we know from Chapter Four. Even more: 
the constant π, familiar since childhood, will connect to е, that 
mysterious constant which lurks everywhere (surfacing momen-
tarily in Chapters Three and Four)—and these two constants will 
be tied in a golden knot with i, as if in the welter we had caught a 
glimpse of unity.

“No great thing comes without a curse,” said Sophocles. To 
reach this height we will have to avoid the gaping crevasse of calcu-
lus, as beautiful as it is deep, whose descent we could make had we 
the time. Instead we will follow the Greek precedent and set a sibyl 
over it, to speak oracles from its exhalations when we need them.

Like all good travelers we pack a bilingual dictionary in our 
knapsack. This one lets us convert the arbitrary degrees, with 
which we have up to now measured angles (only ancient arithme-
tic convenience, after all, broke circular measure into 360 equal 
shares), into the more natural radians, defi ned this way. Think of 
the radius as a short length of spaghetti, boil it for six minutes and 
you will fi nd that you can lay it off along the curve of the circum-
ference. Now since the circumference is 2πr long, precisely 2π 
radians (boiled radii) will lie around it. If we operate in our unit 
circle, where the radius is 1, our circumference will be 2π—that is, 
it will take 2π radians to complete the task we previously described 
as a 360° tour. π radians will take us halfway round, and 2

π  radians 
will give us a 90° angle. In general, x degrees = 2

360
π  · x radians. By 

convention, positive angles rise up from the x-axis; a picture will 
make all clear:
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Not only are radians a more intrinsic measure of angles than 
degrees were, but they let trigonometric functions like f(x) = sinx 
or g(x) = cosx act as functions usually do, not with special “degree” 
inputs, but the normal real numbers that come from measuring 
distances around the circumference (reals between 0 and 2π if we 
go once around a circle, those between 2π and 4π if we wrap 
around it a second time, and so on). Negatives are defi ned as corre-
sponding to angles measured clockwise from the x-axis.

A table of some outputs for sine and cosine will act as a rough 
guide to the region:

 x in degrees x in radians sine x cosine x

   0 0 0 1

  45 4
π

 
2

2  
2

2

  90 2
π

 1 0

 135 
3
4
π

 
2

2  
2

2
−

 180 π 0 –1

 225 
5
4
π

 
2

2
−

 
2

2
−

 270 
3
2
π

 –1 0

 315 
7
4
π
 

2
2

−
 

2
2

 360 2π 0 1

 405 
9
4
π

 
2

2  
2

2
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Indian mathematicians (probably before 1500), discovered 
wonderful infi nite polynomial equivalents of sine and cosine and 
Newton rediscovered them independently in the seventeenth 
century. Here they are (the angle x is from now on measured in 
radians):

The triple dots at the end of each line mean, as always, that the 
series continue in this pattern forever, with strict equality only 
after infi nitely many terms. A few terms, however, give remarkably 
good approximations. sin 4

π = 2
2  ≈ 0.707106781, for example, and 

the fi rst fi ve terms of the series for sin 4
π  yield

Taking π as approximately 3.1415926535, 4
π  would be .785398163, 

and fi ve terms of our series would give us

0.785398163 0.484473073 0.298847348
1 6 120

0.184344069 0.113712689 0.707106782 :
5040 362880

− + −

+ =

only a few steps toward infi nity give us an accuracy of eight deci-
mal places!

What have these two series to do with е, that constant of expo-
nential growth, which is approximately 2.718281828459045? We 
can raise е to various powers—even rational numbers and (with 
the help of calculus) any real number x, giving us a function
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еix = 
2 4 6 3 5 7x x x x x x x1 ... i ...

2! 4! 6! 1! 3! 5! 7!
   
− + − + + − + − +   

   

In other words,

еix = cos x + i (sin x).

Amazing, and too good not to be true—and although it took more 
than a hundred years for others (such as Gauss and Cauchy) to make 
the sense Euler wanted of fi tting in a complex variable where the real 
one had been, he was—like all mathematicians—easy with delay.

Here was a reward for such insouciance. sin π = 0 and cos π = 
–1, as you can see in the picture:

If we therefore let x = π in

еix = cos x + i (sin x)

we get

еiπ = –1 .

Blink twice and look again: е, i, and π, those three remote peaks, 
have shimmered together to yield the barely more familiar mystery 
of –1. “Gentlemen,” said Benjamin Peirce to his students at 
Harvard University one day late in the nineteenth century, “that is 
surely true, it is absolutely paradoxical; we cannot understand it, 
and we don’t know what it means, but we have proved it, and 
therefore, we know it must be the truth.”
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r = 1 and φ = 0

we must have

{r [cos φ + i sin φ]}2 = 1 + 0i = 1 [cos 0 + i sin 0]

and de Moivre lets us rewrite the left-hand side, giving us

r2 [cos 2φ + i sin 2φ] = 1 [cos 0 + i sin 0].

So r2 = 1 (just as with real and imaginary parts, real moduli and 
these complex coordinates do not intermingle). If r2 = 1, the 
modulus r = 1, because lengths can’t be negative. And if

cos 2φ + i sin 2φ = cos 0 + i sin 0 ,

then 2φ = 0, or any equivalent of 0 radians as we wrap around the 
circle again and again: 0, 0 + 2π, 0 + 4π, 0 + 6π, . . . : in general, 0 + 
k · 2π radians, where k is a natural number. So

2φ = 0 + k · 2π ,

hence

0 2k k
2 2

π
φ = + ⋅ = π

 
,

for any natural number k.
When k = 1, φ = π, and we get the –1 we expected:
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when k = 2, φ = 2π, which thus takes us to the other square root of 
1, namely 1:

What about k = 3, 4, and so on? 3π, 4π, 5π, . . . just keep taking us 
back and forth between these two square roots of 1: –1 and 1.

Interesting: they lie at opposite ends of this diameter.
What then of the three cube roots: will de Moivre help us trans-

form the frogs of page 241 into handsome princes? Let’s just repeat 
what we did with square roots. The complex numbers x satisfying 
x3 = 1 have the form r [cos φ + i sin φ], with now
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r3 [cos 3φ + i sin 3φ] = 1 [cos 0 + i sin 0]

once again the modulus r = 1, but now

3φ = 0 + k2π

so

0 k2 k2
3 3 3

π π
φ = + = .

For k = 0 we get 0 radians: the perennial root 1.
For k = 1, 2

3
π  gives us an angle in the second quadrant,

and for k = 2, 4
3
π  an angle in the third quadrant.

k = 3 yields 2π again (the root 1 we have already), and from 3 on 
we will only cycle through the roots already found.

Our geometric instinct springs awake: the three distinct cube 
roots of 1 are the vertices of an equilateral triangle!

9781608198696 The Art of the Infinite (836h).indd   2459781608198696 The Art of the Infinite (836h).indd   245 04/02/2014   20:32:0604/02/2014   20:32:06



The Art of the Infi nite

246

And the four fourth roots (oh, of course: 1, i, –1, –i) lie at the verti-
ces of a square:

the fi fth, sixth, seventh roots at the vertices of pentagon, hexagon, 
heptagon—

each of the regular n-gons, in fact, is reincarnated by de Moivre’s 
Formula as an unexpected bearer on the complex plane of the n 
nth roots of unity.

The n nth roots of unity, making angles of 2k
n
π  from the

horizontal root at 1, for each k from 0 to n – 1.
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Back of Beyond

This has been the romance of imagination and the infi nite. Like 
the beloved in tales as old as time, the infi nite keeps escaping 
imagination’s stratagems, drawing it on through intrigues that 
must any moment surely untangle. Mathematics being the stuff of 
invention and mathematicians each Alcibiades in disguise, why 
not just declare (since faint heart never won fair lady): here is the 
infi nite, right here, in your midst. You have only to recognize it to 
make it yours.

Easily said, but how is it to be done? Think of Euclid’s plane 
everywhere stretching away, with its parallel lines that meet at no 
“here” you can picture—unless it be through Alberti’s Veil.

That wonderful Florentine, Leon Battista Alberti, shared the 
Renaissance eagerness to translate the beauties of the visible 
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world into painting—to represent its depth on the plane—and 
saw how to do it by making “a veil, loosely woven of fi ne thread, 
dyed whatever color you please, divided up by thicker threads 
into as many parallel squares as you like, and stretched on a frame. 
I set this up between the eye and the object to be represented, so 
that the visual pyramid passes through the loose weave of the 
veil.”

This notion of the visual pyramid (we might say “visual cone”) 
was the key for turning three dimensions into two—a pair of pyra-
mids, really, with our eye at the near apex, the “vanishing point” 
ordering pictorial space at the far, and the veil in between changing 
one image into another:

What was that vanishing point if not where the parallels receding 
from us palpably met?

The principles of perspective drawing developed with Italian 
gusto. How, for example, should a receding tiled fl oor be correctly 
drawn? Alberti’s answer was ingenious: space the lines of the 
receding edges equally far apart:

then put the nearest pair of horizontal edges where you will,
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draw a diagonal through the left-handmost tile, and continue it to 
the horizon on which the vanishing point lies.

Where this diagonal crosses the other perspective lines shows 
where to draw the rest of the horizontals:

This was Alberti’s “legitimate construction” (costruzione legit-
tima). It was neither the fi rst nor the last time that the asymmetry 
of a diagonal would win the day.

All through the Renaissance, artistic practice begot a fl urry of 
mathematical insights to support and extend it, but not until the 
early years of the nineteenth century was an organic geometry 
developed which added as many vanishing points to the Euclidean 
plane as there are directions, and a circumscribing horizon as well, 
a “line at infi nity” for all those “points at infi nity” to lie on. What 
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the eye proposes, Mind disposes—but it is always Mind incarnated 
in some particular mind.

The mind in this case belonged to a young French lieutenant 
of engineering in Napoleon’s army. Jean-Victor Poncelet was a 
man of extraordinary willpower and character (at fi fteen he had 
trained his dog to wake him at dawn so he could get back to his 
studies; the dog often found him asleep at his desk). At twenty-
four he marched into Russia with the Grande Armée and was left 
for dead at the battle of Krasnoi, near Smolensk, in November 
1812. The soldiers of the victorious Field Marshal Prince 
Miliradovitch recognized his offi cer’s insignia and carried him 
off for interrogation, which saved him from death but condemned 
him to walking four months, and six hundred frozen miles, over 
the silent long plains to prison at Saratov, on the Volga. To keep 
up his spirits during the two years there, he tried to remember 
the mathematics he had studied, in a different life, just a few 
years before, at the Ecole Polytechnique in Paris. But the spiny 
demonstrations, the abstractions and generalizations, had 
perished with his comrades in 
the cold.

He began to build mathe-
matics up from fundamentals 
again, trading his scanty rations 
for paper, making his own ink, 
and using the walls of his cell as 
a blackboard. Soon he found 
his mind moving over vaster 
plains than those of Russia, and 
beyond the geometry he had 
been taught. “Oh God!” said 
Hamlet, “I could be bounded in 
a nutshell and count myself a 
king of infi nite space.” Perhaps 
being so bound in Saratov was 
what made Poncelet the king of 
projective geometry.

What sort of geometry can 
this be, where parallels meet? 

Poncelet (1788–1867). Loyal to 
his youth, he published in age 

his early work unedited by hind-
sight; loyal to France, he wasted 

his geometric foresight on its 
bureaucracy.
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How can we picture, or even conceive of, a plane on which Alberti’s 
horizontals also meet at a vanishing point—where no matter which 
way you look parallel lines converge, so that in fact there are no 
parallels at all? Isn’t such an idea repellent to thought and repug-
nant to the world?

It certainly was to the world of Euclidean geometry. Some of the 
best mathematicians had tried for two millennia to prove what 
must be more than a mere postulate: that on a plane there is one 
and only one line, m, parallel to another line, , through a point P 
not on .

   

Gerolamo Saccheri (1667–1733) spent years trying to vindi-
cate Euclid and, ironically, developed without realizing it most 
of the ideas of a geometry with many parallels to a given line 
though a point P not on it. Johann Heinrich Lambert, a gener-
ation later, tried to solve the parallel problem by looking at 
polygons on an unimaginable sphere of imaginary radius. The 
failure of all these attempts led even Gauss to speak of the 
parallel issues as the shameful part of mathematics, and to 
suspect, as did others, that if the existence and uniqueness of 
parallels was merely postulated, the opposite could be postu-
lated as readily. There was, besides, a certain irritating asym-
metry to Euclidean geometry: some lines had a point in 
common, others had none:

Why not restore symmetry by adding in the missing points: for all 
lines on the plane parallel to one another in a fi xed direction, add 
just one point “at infi nity” where they all meet:
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(the shape resulting from trying to picture this may have led to the 
bundle of lines being called a pencil)* We don’t add two points at 
infi nity for a pencil—one left, one right, or one west, one east—in 
order to preserve the postulate that two lines can’t meet more than 
once. Along with these special points, add in the special line we 
spoke of on page 253: the line at infi nity on which, like an ultimate 
horizon, these special points glitter. This completes the Euclidean 
to the Projective plane, which you might try to picture like this:

The pencils, swung through 180°, trace out the curve of the far 
horizon.

After mathematicians had spent a long time looking at it this 
way and that, the Projective plane turned out to be much simpler 
than Euclid’s, with a packet of axioms even smaller than it seems:

P1: Any two points lie on exactly one line.

P2: Any two lines meet at exactly one point.

P3: There are (at least) three non-collinear points.

P4: At least three points lie on every line.

* How far toward pure formalism are you willing to go? Would you agree to 

having the “point” at infi nity added to this pencil of lines be nothing other than 

that pencil itself?
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(Those last two axioms are to satisfy the inner Hilbert: “Does it 
exist?”)

How can we look on the plane these axioms create and see it as 
it really is, without having to peer through a veil, or put up with 
such distortions as those playful “pencils”? You can no more expect 
to invite the infi nite into your cozy world with impunity than hope 
that Alcibiades won’t carry off half the silver from your feast. What 
we can do, however, is incarnate the projective plane in different 
ways, and by savoring the oddities of each, come better to appreci-
ate its character.

There are several models of the four axioms: here is a surprising 
one. The objects themselves aren’t surprising: the points are the 
familiar dots and the lines the conventional streaks—but there will 
turn out to be very few of each. Start with the three non-collinear 
points that the third axiom demands—call them A, B, and C:

Now to fulfi ll P1 make lines through each pair of points,

and in a dream of Euclid construct another line through A, as if it 
were to be parallel to BC:
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But P2 says it can’t be: the new line must meet line BC in a new 
point D:

What begins as a parallel to AB through C must meet it in a point 
E, intersecting AD at F along the way

and satisfying P1 again with a line through B and F gives us a new 
point G where this line meets AC:

You probably think that this process of adding new points at the 
urging of P2 and new lines at the behest of P1 will go on forever, 
generating a model with an infi nite number of points and lines—but 
in fact we have all the points we need and all but one of the lines. D 
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and E need to be collinear, as do E and G—and so do D and G. Why 
not satisfy all three demands at once with the drunken “line” DEG?

If you object that DEG is no line at all but a wandering path, remem-
ber that “line” is an undefi ned term: only custom (and Euclidean 
custom at that) asks that lines be straight. What matters here is 
simply—and startlingly—this: our model with its seven points and 
seven lines fulfi lls the four axioms of the projective plane (we met 
the requirements of P4 without even having to think about them).

This model may satisfy the axioms but it hardly satisfi es the 
mind. Weren’t we supposed to acknowledge that if it wasn’t beau-
tiful it wasn’t mathematics? Very well. Recall that in Chapter Five 
we found the incenter of any triangle: the point where the angle 
bisectors meet, which is the center of the “incircle” tangent to the 
triangle’s three sides:

Can’t we now freshly see this triangle with its angle bisectors, 
incenter, and inscribed circle as the seven point and seven line 
projective plane? True, one of the “lines” looks like a circle, but that 
is only because the doors of our projective perception have not yet 
been thoroughly cleansed.
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How could such a cramped fi gure embody a geometry of spatial 
infi nity? Other models are slightly larger, but fi nite too. We can 
construct one with thirteen points and thirteen lines, but if we 
start as we just did, putting down dots and running streaks through 
them, we will quickly get into a tangle resembling nothing so much 
as the web of a spider on LSD. The visual has always helped us—
but our stubbornly Euclidean intuition means that it hinders us 
here. On the premise that what the eye can’t see, the heart won’t 
grieve for, let’s turn momentarily away from sight altogether and 
think of our points as letters and the lines as their combinations. 
We will number these lines, only asking that each have exactly four 
“points” on it (that is, four different letters in its set).

Line 1 = {a, b, c, d}.

Now P3 requires that there be a point—a letter—not in this set: 
make it the letter e. Then we must have a new line with a and e on 
(or in) it: P1 tells us that none of b, c, or d can be on this line as 
well—so we need two fresh points, f and g:

Line 2 = {a, e, f, g}.

We will go on systematically in this way, making sure that any two 
letters lie in a unique set and that each set contains four letters. The 
fear that the bookkeeping will lead us to infi nite excess is gradually 
put to rest as the combination both needed and possible converge:

Line1 {a b c d}
Line 2 {a e f g}
Line 3 { b e h i}
Line 4 { b f j k}
Line 5 { b g l m}
Line 6 { c e j l}
Line 7 { c f h m}
Line 8 { c g i k}

=
=
=
=
=
=
=
=
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Line
Line
Line
Line
Line  

9 { d e k m}
10 { d f i l}
11 { d g h j}
12 {a h k l}
13 {a i j m}

=
=
=
=
=

These letters and sets of letters obey each of our four axioms and 
so constitute a model of the projective plane.

Such a combinatorial exercise may lead you to agree with the 
nineteenth-century mathematician J. J. Sylvester: “Brindley, the 
engineer, once said that rivers were made to feed navigable canals; 
I feel almost tempted to say that space was made for feeding math-
ematical invention.” Or it may cause you suddenly to reconsider 
the projective plane: it isn’t a kind of space after all. It is a struc-
ture, a system of relations, which we could, if we chose, embody in 
space—but it is no more native to space than is the transmigrating 
soul to a particular creature’s body. Must this then not be true of 
Euclidean “space” as well, or of anything generated by a collection 
of axioms?

We could go on to accountants’ heaven with projective planes 
having 21 points and 21 lines, each with 5 points, or 31 of each (6 
points on a line)—in fact n2 – n + 1 for any number n that works (but 
some don't, like 7 and 11, and we aren't yet sure about 13: this sea has 
yet to be fully explored)—and so create an infi nite number of fi nite 
models of the projective plane! But to nourish our starving intuition, 
let’s look at one last visual model of this geometry, as wildly different 
from any of these as each is from its siblings: the thistle.

Picture the thistle’s spines radiating out from a common core in 
every direction—or if that is too prickly, turn it into a Kooshball, 
but with infi nitely many rubber threads rather than a mere 5000. 
The spines or threads may be as long as you choose—infi nitely 
long, if you wish. You probably think that these will be the lines of 
our projective plane—but the surprise is this: they represent the 
points. Recall once more that “point” and “line” are undefi ned 
terms, so we may model them as perversely as we will, if only they 
behave according to the four axioms.
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What then will stand for lines? Any two of these spines intersect 
at the center:

and back in the bucolic days of Euclidean geometry, two intersect-
ing lines defi ned a plane. Each such plane will act as a line here. 
This makes sense: if our points look like lines, our lines must look 
like planes.

We now have to check: do any two points lie on exactly one line? 
That is, do any two spines or threads lie on a distinct plane? Yes, as 
you saw above, or as reinterpreted here:

Do two lines meet in exactly one point? Our translator interprets: 
do two planes meet in exactly one line through the center? Again, 
yes:

Are there three non-collinear points? That is, are there three 
threads of the Kooshball that aren’t all on the same plane? Here is 
an example:
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Three concurrent lines not all in the same plane—i.e., three “points” not all on the same “line.”

And fi nally, has every line (that is, plane) at least three points (i.e., 
lines through the center) on it? Of course:

“Koosh” may be the sound that it makes when it lands in your 
hand—but what the Kooshball tells us is that we need three 
Euclidean dimensions to represent two of projective space; and 
that a model as far-fetched as this captures the structure latent 
in those four axioms as fully as does the seven- or thirteen-point 
plane, or the Euclidean plane completed with points and the line 
they lie on at infi nity. When next you see the soft explosion of 
chrysanthemum fi reworks in the summer night, or pick a 
humble burr off the hem of your coat, remember the projective 
plane.

If you are tempted to ask about any of these models: “Which is 
that special line at infi nity in it, and which the special points?” we 
return the question to you with interest. Go back to our fi rst model 
on page 256 (though it deserves a more dignifi ed name than that, 
being no mere example but a very exemplar): the completed 
Euclidean plane. After it was completed—once any two lines met in a 
point and any two points lay on a line—could we really pick out the 
points or the line at infi nity? The projective axioms have homoge-
nized everything: these are all just points, just lines, obeying four 
laws. The desire to bring the infi nite into our garden has had the 
unexpected consequence of giving all our plants double names. As 
we trim and tend the growths and watch patterns emerging among 
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their patterns, novelties will merge into a new familiarity that satisfi es 
desires we don’t yet know we have. It isn’t that we get what we want, 
as Proust once remarked, but that we come to want what we get.

We begin to acclimate ourselves to this landscape by fi rst observ-
ing that there must be three non-concurrent lines in it: for the 
three non-collinear points that axiom P3 gave us will have lines 
through each pair of them by P1;

these can’t all concur if P1 is still to hold. This is one of those 
truths you may think too trivial to mention, but we will soon profi t 
from it in an unexpected way.

Slightly less obvious is a second observation of the same fi gure: at 
least three lines must meet at every point, for there will always be 
two points, such as A and B, which aren’t both collinear with C (the 
point in question), and given the usual three lines through the pairs,

we will get two meeting at C. But P4 gives us another point D 
somewhere on AB, and DC is the third line going through C.

Having warmed up with these two exercises, look again at that 
packet of four axioms we said might be even smaller than it 
seemed. P1 and P2 oddly echo each other:
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the core of this geometry: perspective and projection. In Euclidean 
geometry similarity and congruence were the key relations among 
triangles. Let’s see how two triangles are most naturally related 
here. Alberti’s Veil gives us the answer at once:

If you look at ∆ABC from a point of view O, ∆A´B´C´ is its image: 
or think of O as a light; then ∆A´B´C´ is its shadow. ∆A´B´C´ is in 
perspective with ∆ABC. Of course in this land of doubles, ∆ABC is 
just as much the image or shadow of ∆A´B´C´—but that’s all 
right: the two triangles are in perspective when viewed from O, 
their center of perspectivity (just as on the Euclidean plane, the rela-
tions of similarity and congruence are symmetrical). Let’s write:

∆ABC  ∆A´B´C´

to mean that the two are perspective from O; that is, the paired 
vertices are lined up on rays from O: O, A, A´ are collinear, as are 
O, B, B´, and O, C, C´.

We might even do one perspectivity after another:
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Here ∆ABC  ∆A´B´C´, but also ∆A´B´C´  ∆ABC. This chain 
of two perspectivities (from different points of view) we’ll call a 
projection, and say we have projected ∆ABC onto ∆ABC (or 
vice versa) via this chain. A projection can have as many links as 
you choose—and we’ll grant the title “projection” even to the 
single link of one perspectivity.

Where has this gotten us? Aren’t things worse than ever? Two 
triangles in perspective certainly needn’t be congruent—nor even 
similar; they probably haven’t the same area and one triangle 
might even be acute and the other obtuse!

With such a feeble relation between them, how could we hope to 
have anything as interesting as the collinearities and concurren-
cies of Chapter Five? What shall abide the coming of projection? 
Is not all changed in the twinkling of an eye? We relied on congru-
ence in geometry and equality in algebra in order to transform 
one thing into another and see what nevertheless remained 
invariant; yet here all is seeming and shadow, with no objective 
form.*

Let the light of the golden seventeenth century organize these 
seemings into sense. A self-taught French architect and engineer, 
Girard Desargues, discovered a new and even more profound 
invariant of the projective plane.

He leads us to look once more at the simple, defi ning situation 
in this geometry: two triangles in a perspective drawing on a 
plane:

* If you worry about how much things seem to be slatting around on the projec-

tive plane, a theorem lurks in the Appendix through which they are miraculously 

made fast.
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But you are seeing them only in part, he says: line-segments, not 
lines. Extend, for example, sides AB and A´B´ until they meet (as 
they must) at some point P.

We are in danger of cluttering up the picture with too many lines—but 
go on, he says, and fi nd where the other paired sides meet at Q and R:

We have been in a situation like this before: those three centers of 
a triangle, in Chapter Five, that had to be collinear. Is it an accident 
that P, Q, and R seem to be collinear too?*

* We needn’t have pictured the line that these three points lie on as “straight” but 

do so to accommodate our Euclidean vision. That what is to come also works on 
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To show that in fact they must be, we travel, as always, elsewhere: 
not back to Euclid now but ahead into three-dimensional projec-
tive space, P3, whose six axioms—aimed at preventing parallels—
are as straightforward as those of the projective plane. They include 
such assertions as that a line must intersect any plane in a point, 
and any two planes must meet in a line, and that there must be 
four non-coplanar points. Here is Desargues’s gem of a proof that 
the paired sides of two triangles, perspective from a point, meet in 
three points that are collinear.

If the two triangles ∆ABC and ∆A´B´C´ lie on different 
planes, N and M, and are perspective from some point O on 
neither plane, then their paired sides when extended must meet 
in three points that lie on the line  where the planes M and N 
intersect.

the Euclidean plane shows that once more we are entertaining a visitor there who 

has traveled from his projective home.
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Why? Because lines OAA´ and OBB´, for example, intersect (at O) 
and hence form a plane—call it T.   AB and A´B´ are two lines on this 
plane and so must intersect at a point—call it P. Since AB is on N 
and A´B´ on M, P is on each of these planes and so must lie on their 
intersection, the line , which is the hinge between the two planes. 
The same argument works for Q and R, so that all three lie on .

This is all very well, but not quite what we wanted. We need to 
deduce the same result when ∆ABC and ∆A´B´C´ are on the same 
plane. Here’s Desargues’s architectural masterpiece.

We have ∆ABC and ∆A´B´C´ on one plane—call it V—and 
perspective from a point O on this plane.

We know (from the axioms for projective space) that there is a 
point S not on the plane, so consider the line on which S and O lie 
(any two points lie on a line). Every line in projective geometry has at 
least three points, so there is another point—call it S´—on this line.
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Now we will simply build Alberti’s visual pyramids. Construct 
lines of sight from S to A, B, and C, and from S´ to A´, B´, and C´.

What may look confusing is really two pyramids intersecting, since 
SA, for example, and S´A´ must meet at some point—call it A. 
Why must they meet? Because lines OSS´ and OAA´ meet at O, 
and once more, two intersecting lines form a plane. SA and S´A´ 
are lines on this plane, so must intersect.

Again the same kind of thinking shows us that SB and S´B´ 
intersect (at B) and SC and S´C´ (at C). A, B, and C are the 
vertices of that small triangle fl oating above plane V—the inter-
section of the two pyramids from S and S´.*

Now, with Desargues’s eye, look steadily at what he has built 
and remember the fundamental power of transitive thinking. The 
fl oating triangle ∆ABC and ∆ABC are on different planes but 
perspective from point S—hence, by Desargues’s proof for trian-
gles on different planes, their paired sides, when extended, meet at 
three points on one line: the line  where plane V intersects the 
plane (which we haven’t drawn in) of ∆ABC. Call those points 
P, Q, and R.

* If A, B, and C were collinear, A, B, and C would be too—and we began with 

them forming a triangle.
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The fl oating triangle ∆ABC and ∆A´B´C´ are also on differ-
ent planes, but perspective from point S´—hence, again their 
paired sides, when extended, meet at three points on line . These 
must be the same three points, since AB, for example, intersects  
with AB at P and intersects it again with A´B´—but one line 
cannot intersect another in more than a single point.

By going up into a third dimension and returning, Desargues has 
shown that two coplanar triangles, perspective from a point, are also 
“perspective from a line” (a condensed way of phrasing his conclusion). 
This line on which the paired sides meet is called the axis of perspectivity. 
We can relish his insight now as if it lay wholly on the plane.

This being projective geometry, we are enticed into looking at 
Desargues’s confi guration from several different points of view. 
The fi rst is duality. Since we now have the theorem: “If two trian-
gles are perspective from a point, then they are perspective from a 
line,” its dual must also be true: “If two triangles are perspective 
from a line, then they are perspective from a point.”

This dual is by no means as obvious as the original statement, but 
its proof grows beside the double river that waters this land.

At least as remarkable is the following exercise in looking at things 
askew. We will draw once more the “Desargues confi guration” of 
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ten points and ten lines. ∆ABC and ∆A´B´C´ are perspective from O 
and hence from line PQR. Now blink, and settle your seeing on any 
point other than O: choose, for example, C, and call it the center of 
perspectivity. Look—a new planet swims into our ken: ∆OAB and 
∆QRC´ are perspective from point C, and also from line A´B´P!

Choose another one of the ten points in this confi guration as the 
center of perspectivity: again two triangles line up with it, and a 
fresh axis of perspectivity. Just as no point turned out to be a special 
“point at infi nity,” so none is a special “center of perspectivity”. 
There are ten distinct “Desarguean confi gurations” compiled in this 
one—more collinearities and concurrencies than in all of Chapter 
Five, more ambiguities than in the most hypermodern novel.

Perhaps the most disconcerting refl ection is this. We proved 
Desargues’s theorem about the projective plane by moving into 
projective three-space. We had to: there can be no proof of it 
confi ned to the plane itself, making this particular fetching from 
afar not a jeu d’esprit  but a necessity. People therefore tend to 
speak not of Desargues’s theorem but Desargues’s “theorem,” 
since it is a theorem (as is its dual) only for projective planes when 
they are thought of as part of projective three-space. For an arbi-
trary projective plane, not similarly ensconced, his “theorem” is 
only an axiom—whose contrary is as easily affi rmed (though at 
fi rst perhaps not as cordially deemed worthy of belief). It is as if 
Desargues’s conclusion were the shadow cast on the plane by a 
proof elsewhere. The union which set out against Euclid has loos-
ened into a confederation of projective geometries.
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Projective planes in projective space—planes on which Desargues’s 
theorem holds—are so rich that we can never gather up all their 
treasures. In this atmosphere thick with duality, it will come as no 
surprise to fi nd that what were ends soon turn into means. Take, 
for example, the theorem in Chapter Five for which we had a whole 
volley of proofs: the medians of a triangle are concurrent. Let us 
bring yet one more proof—perhaps the most beautiful—from the 
distant projective plane.

Instead of drawing in any of the medians (so artful is this proof), 
let’s just mark the midpoints D, E, and F of ∆ABC’s three sides:

the line joining the midpoints we know (by similar triangles) is 
parallel to the base: so FE  BC, FD  AC, DE  AB:

But parallel lines meet on the line at infi nity—that is, FE coincides 
with BC at some point P there, FD with AC at a Q, DE with AB at 
some R. In other words, triangles ABC and DEF are perspective 
from a line (at infi nity though it may be). Hence by the dual of 
Desargues’s “theorem,” these two triangles are perspective from a 
point—that is, there is an O at which AD, BE, and CF are concur-
rent—as we wished to show. We are looking straight down on 
Alberti’s visual pyramid.

9781608198696 The Art of the Infinite (836h).indd   2749781608198696 The Art of the Infinite (836h).indd   274 04/02/2014   20:32:2604/02/2014   20:32:26



Back of Beyond

275

As J.B.S. Haldane once almost said: Mathematics is not only 
queerer than we suppose, but queerer than we can suppose.

 

We will end this chapter on the endless with a magic trick. The best 
of these give the audience so much freedom to choose that you 
can’t believe they could ever work—or if they do, it must be 
because of hidden accomplices. We love our freedom until it verges 
on an almost synonymous lawlessness at one extreme, a hint of 
subversive powers at the other.

So pick a line, any line, as the card sharpers say—and then pick 
another.

Next, choose any three points you like on the fi rst, and any three 
on the second.
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Please label the points on the fi rst line A, B, and C—but again, in any 
order you choose; and (in any order), A´, B´, C´ on the second line.

Now (while our assistant dusts off the vanishing points) connect 
A to B´ and B to A´, and call P the point where AB´ and A´B cross 
(we are still on the projective plane, so these lines will cross).

Let AC´ intersect A´C at Q, and BC´ meet B´C at R.

Abracadabra! P, Q, and R will be collinear. Should you care to 
redraw or relabel to see if this still looks true, we will entertain you 
the while with Hilbert’s remark that a mathematical problem 
should be clear and easy to understand, since complication is 
abhorrent; should be diffi cult enough to entice us but not 
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completely inaccessible (“lest it mock our efforts”); and should be 
signifi cant: “a guidepost on the tortuous path to hidden truths.”

Once you have convinced yourself experimentally that our 
claim is just, we can indulge in the different sort of conviction that 
comes from a proof—and its very different sort of pleasure as well: 
experiments generate wonder; proofs conclude with awe. Let’s 
begin by adding to our diagram the point O where lines  and m 
meet. We will draw the line PQ and prove that R is on it.

This is where the magician lets out the rabbit that was all the 
time in his hat: take that line PQ as the line at infi nity. What have 
we just done, and who said we could do it? Remember that once 
the Euclidean plane is completed by adding to it (along with 
special points) the line at infi nity, all lines look and behave alike, so 
any one can now be rechristened the line at infi nity! This move is 
like a modulation in a late Beethoven quartet: inspired, outra-
geous, transforming. It trumps the original freedom of choice with 
a freedom of its own.

Since P is now the point at infi nity where AB´ and A´B meet, they 
are in the old Euclidean sense parallel; as are AC´ and A´C, since 
they meet at Q on the line at infi nity. If you like, you may think of 
what we’ve done this way: we have taken advantage of being on the 
projective plane by choosing our point of view so that these pairs of 
lines are parallel. Our confi guration would now look like this:
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the Euclidean plane is completed by adding to it (along with 
special points) the line at infi nity, all lines look and behave alike, so 
any one can now be rechristened the line at infi nity! This move is 
like a modulation in a late Beethoven quartet: inspired, outra-
geous, transforming. It trumps the original freedom of choice with 
a freedom of its own.

Since P is now the point at infi nity where AB´ and A´B meet, they 
are in the old Euclidean sense parallel; as are AC´ and A´C, since 
they meet at Q on the line at infi nity. If you like, you may think of 
what we’ve done this way: we have taken advantage of being on the 
projective plane by choosing our point of view so that these pairs of 
lines are parallel. Our confi guration would now look like this:
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To prove that R (where BC´ and B´C meet) is on this line now 
amounts to proving BC´  B´C.

Let’s assign lengths q, s, t, u, v, and w to segments in the diagram 
as follows:

Since ∆OAB´ ~ ∆OBA´, the sides are in proportion: that is,

q q s
u v (u v w)

+
=

+ + +  ,

so

q(u v w) q s
u v
+ +

= +
+  

,

or

q(u v w)q s
u v
+ +

+ =
+

.

And since 
q (q s t)OAC ~ OCA , ,
u (u v w)

+ +
∆ ′ ∆ ′ =

+ +
   so

u(q s t)q
(u v w)

+ +
=

+ +

and

q(u v w) u
q s t

+ +
=

+ +  
,

or

q(u v w)u
q s t

+ +
=

+ +  
.
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P, Q, and R are still collinear, no matter where you put them or 
how you label them.

Shall we push incredulity further toward the brink? Distort that 
circle into any sort of ellipse and P, Q, and R remain stubbornly 
perched on a single line:

What about a parabola?

Dare we go to the extreme of a hyperbola’s two branches?
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Could we risk even thinking about the duals of each of these 
theorems?

Hard to swallow as the proof of Pappus’s theorem was with a 
pair of straight lines, won’t trying to prove it in any of these four 
new confi gurations mock our efforts? Not at all. They will now be 
simplicity itself and a guidepost on the tortuous path to hidden 
truths (indeed, Hilbert called Pappus’s theorem the most impor-
tant in all of plane geometry, because Desargues’s theorem, or any 
theorem about lines meeting on the plane, can be derived from 
it). The simplicity comes from noticing that a pair of lines, a 
circle, an ellipse, a parabola, and a hyperbola are all conic sections: 
slices, not through Alberti’s visual pyramid, but through a palpa-
ble cone. They are projective transformations, therefore, of one 
another, when seen from the cone’s apex (the hyperbola’s second 
branch lies up in the cone’s mirror image: extending, as always, 
the known into the new). A projective invariant of one will be 
invariant for all.

Projective geometry—so sprightly in its approaches, so 
profound in its results—is the contemplation of permanence 
behind change, animating the sculptural beauty of Euclid in a 
world of transformations. Peacock fumbled at this with his 
Principle of Permanence. The new and deeper sense it makes here 
was expressed as a Principle of Continuity by Poncelet in 1822: “If 
one fi gure is derived from another by a continuous change and the 
latter is as general as the former, then any property of the fi rst 
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interlude

The Infi nite There—
But the Finite Here

It is the immediate, the close at hand, the precious moments that 
most matter to us. What then keeps calling us away? Perhaps what’s 
oddest about our human condition is that each least in it seems 
netted in a gauzy infi nite: explanations never end, every hill has its 
other side, if is not followed by then but by a further if.

Change, for example, pervades our lives; but to understand and 
master it, we must plunge at once into the tumbling infi nities of calcu-
lus. Are these infi nities mere fi ctions? If so, they are fi ctions we can’t do 
without. You want to grasp the rate at which a process is changing at 
this very moment? So draw a graph of the function describing the 
process and ask about its slope at the point representing this moment.
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Hence there must be exactly as many square numbers as there are 
naturals. Clearly, however, there are fewer, since the squares grow 
ever sparser as you go along.

Putting the question aside seemed for a long time the best way 
of coping with it. Infi nite collections of numbers were too slippery 
to try comparing, as if we were being warded off from these higher 
mysteries by their power to confuse. We could speak negatively of 
approaching but never reaching a limit, or of there not being a last 
prime; and positively about what must be true for any (or was it 
every?) number—we could even make fi nite models of infi nite 
planes. But how could a mind tucked into a little skull possibly 
grasp the infi nite as such, or count its way through infi nite 
multitudes?

The work of a single man utterly changed our glib know-
nothingness forever. What was to follow would be colored by the 
strengths and weaknesses of his particular personality, rather than 
having the impersonal air we tend to associate with mathematics 
and collective work.

Georg Cantor must have been born in the imperative mood. This 
mattered at least as much as the intellectual climate of Germany in 
1845. He was propelled through his youth by a torrent of a father 

(“Now my dear son! Believe 
me—to prevent the slander of 
open or secret enemies you need 
to acquire the greatest amount 
possible of the most basic 
knowledge. Whatever one 
neglects through premature 
extravagance is irretrievably lost, 
like lost innocence . . . Your 
father, your family, have their 
eyes on you . . .”). Even more 
compelling was what he 
described throughout his life as 
a secret voice—within, above, 
unknown—a “more powerful 
energy” that spoke through him. 
He always looked for the face Cantor as a young man.
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behind the mask and then for the mask behind that. Docile at home, 
domineering among colleagues, playful in mathematics and humor-
less in his wrangles with mathematicians, he was as close to a rein-
carnation of Alcibiades as nineteenth-century Germany could 
produce—not only in his enthusiastic energy and wild daring, but 
in the ferocious way he fought when cornered—Alcibiades by 
Phrygians, Cantor by ideas.

Let’s return, with Cantor’s infl exible will and malleable imagi-
nation speaking within us, to Galileo’s problem of the natural 
numbers and their squares. Since each number has its unique 
square and each square corresponds to a single natural, it certainly 
seems right that there are just as many squares as there are natu-
rals, for all that the squares are scattered among them. Let skepti-
cism give way to astonishment and astonishment to experimental 
candor: let’s follow where this observation leads.

Other such correspondences come trooping after. Although 
only every second natural number is even, there must nevertheless 
be exactly as many of them as naturals, since each natural is 
perfectly matched with its double:

N 2N
1 ↔ 2
2 ↔ 4
3 ↔ 6
4 ↔ 8
. . .
. . .
n ↔ 2n

To say these matchings-up show that there are as many of one 
kind as of the other needs, of course, a very bold leap of thought. 
We are taking each sort as a completed whole: all the naturals match 
up perfectly with all the evens, or with all the odds. Stop short and 
the correspondence breaks down: there are only 50 evens among 
the fi rst 100 naturals, for example, and 50 odds.

The multiples of 3 are even thinner on the ground than those of 
2—and yet once again, there are just as many of them as of the 
naturals they are selected from:
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N 3N
1 ↔ 3
2 ↔ 6
3 ↔ 9
4 ↔ 12
. . .
. . .
n ↔ 3n

We could walk over N in seven league boots and take just as 
many paces as the numbers we stride through:

N 7N
1 ↔ 7
2 ↔ 14
3 ↔ 21
4 ↔ 28
. . .
. . .
n ↔ 7n

How little a step now for the mind to invoke its own sort of 
infi nity and declare: for any natural number m, there are just as 
many multiples of m as there are natural numbers altogether:

N mN
1 ↔ m
2 ↔ 2m
3 ↔ 3m
4 ↔ 4m
. . .
. . .
n ↔ nm

If you ask: how many is that? we could answer in terms of cardinal 
numbers, which read off what the size of a set is—that is, how many 
elements (in whatever order) it contains. The set with a cabbage, a 
goose, and a fox:

{cabbage, goose, fox}
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Although the word “set” fi rst took on its technical meaning 
with Cantor, surely it stands for what we are all born knowing, as 
we observed in Chapter Two. Sords of mallards and prides of lions 
tickle our easy aptitude for making a many into a one. It is almost 
more comfortable to think, for example, of your old gang taking 
on a bunch of hoodlums than having to deal with single people 
who have faces and friends. If counting, as mathematicians know 
from bitter experience, is harder even than hitting a round ball 
with a round bat (which Ted Williams said is the hardest thing 
there is), certainly the young Cantor made it signifi cantly easier by 
recognizing “set” as the central noun of the new language he was 
inventing. Its central verb was “to correspond.” The correspond-
ence between the members of the sets might be hard to fi nd; the 
way you made it might seem artifi cial or bizarre—but once 
revealed, the two sets between which it ran had to have the same 
cardinality. Conversely, you must agree, if somehow you proved 
that no 1–1 correspondence could exist between the members of 
the two sets, then their cardinalities would have to be different. On 
such casual agreements momentous conclusions hang.

Let us continue, with Cantor, to learn again how to count—
which may make us sympathize with birds and chimpanzees. 
Having found that any infi nite sequence of the naturals is count-
able (not as great a surprise as it fi rst seemed, if you think about it, 
since such a sequence will have a fi rst term, then a second, third, 
and so on—and ordering them thus in effect counts them), we are 
tempted to look in the opposite direction: not at subsets of N but 
at a set that includes it. This is the set Z of integers, with zero and 
the negatives of the naturals as well. Is it possible to put this set too 
in one-to-one correspondence with its subset N?

Yes, but with a slightly greater effort of the imagination. After 
starting with 0, just hop back and forth between the naturals and 
their negatives:
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This establishes the match-ups:

N Z
1 ↔ 0
2 ↔ 1
3 ↔ –1
4 ↔ 2
5 ↔ –2
6 ↔ 3
7 ↔ –3
. . .
. . .

We have thus shown that the integers have the same cardinality 
as the naturals.

Such a clever way of pairing gives us the confi dence now to 
think the unthinkable and face what Galileo shied away from: a 
more than infi nity. For if you look at all the rational numbers Q, 
or even at just the positive rationals—the set of all these frac-
tions—there are obviously more of them than there are natural 
numbers, since between any two fractions will lie another, until 
what was the space from one natural to the next will be crammed 
to bursting with them. You could look at it this way: any set as 
numerous as the naturals is countable, but how could you possi-
bly count the positive rationals? How say, given one of them, 
which is the next, or even which is the fi rst of them all? Between 
0 and any candidate you name, another will crop up—and 
another . . .

If it is hard to conjure up the entrenched determination of 
Alcibiades, imagine Cantor prowling the margins of the 
forest of fractions, certain that they could be counted if only 
looked at from the right angle. So the chaos of an orchard 
seen from a passing train resolves itself for a moment into 
ordered rows.

Clearly their obvious order, from smaller to larger, doesn’t help, 
because of the ceaseless in-betweens. They would have to be rear-
ranged, like an orchard:
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Rethinking the divisions on a line as this two-dimensional grid 
is the turn of thought we have met again and again: leaving the 
familiar and nearby to return, enlightened, from a distant land. 
Now at least we have what looks like a beginning: 1

1  pinned in the 
upper left-hand corner. But next? to move steadily to the right, 
clicking off 2

1 , 3
1 , 4

1  . . . will count the top row but leave the vast acres 
of fractions beneath it untouched. To move steadily down from 1

1  
will number 1

2 , 1
3 , 1

4 , and all the Egyptian fractions at the expense of 
the endless columns to their right.

Let these two necessities mother invention by scratching the 
eternal itch of asymmetry. Go neither exclusively across nor 
exclusively down, but zigzag along diagonals through the 
planting:

This is the path that will count the positive rationals, so long as it 
is walked judiciously. Each fraction must appear once—but only 
once—on our list, but the fi fth entry here, 2

2
, is the fi rst, 1

1
, in 

disguise. Very well: starting at 1
1
 follow this maze and count each 

entry in order, so long as it hasn’t appeared before. Then we have a 
1–1 correspondence between N and the positive rationals—Q+. It 
begins:
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N Q+

1 ↔ 1

1

2 ↔ 2

1

3 ↔ 1

2

4 ↔ 1

3

5 ↔ 3

1

6 ↔ 4

1

7 ↔ 3

2

8 ↔ 2

3

9 ↔ 1

4

10 ↔ 1

5

11 ↔ 5

1

.

.

The eccentricity of this sequence makes sense only when you see 
from above the map of its two-dimensional source—but since 
each positive rational appears precisely once here, the sense beyond 
sense it conveys is that the set of positive rationals contains no 
larger an infi nity than that of the natural numbers. “How many” 
must have nothing to do with “how dense.”

Three thoughts come tumbling all in a rush. First, notice how the 
need for imagination has increased by quantum jumps through 
our three problems. To show that the squares or the evens or the 
multiples of any number m were countable took steadfast looking: 
letting the world instruct the eye. To count the integers we needed 
to free ourselves from thinking via succession so as to come up with 
the pert invention of hopping back and forth. To count the positive 
rationals we had to shake off linear thinking altogether and devise 
a two-step as precariously balanced as Harold Lloyd on an I-beam. 
The questions we ask beget means to answer them that grow past 
all expectation in refi nement, and develop an arcana of their own.

Second, you now can see why we said, in Chapter Six, that if the 
bookkeeper in the brain really insisted on putting in order all those 
links in the infi nite chains hanging down from the infi nitely long 
chain of square root extension fi elds, he could do so: just diagonal-
ize through them as Cantor inspired us to do.

Third, not just the positive but all the rationals are crying out 
for us to count them. It only takes combining our second and third 
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techniques. Make the zigzag through the positive rationals and 
then make another, independently, through the negatives:

4 3 2 1

1 1 1 1

4 3 2 1

2 2 2 2

3 2 1

3 3 3

2 1

4 4

1

5

− − − −← ←

− − − −

↓
− − −

− −

−

� � �

� �

�

1 2 3 4

1 1 1 1

1 2 3 4

2 2 2 2

1 2 3

3 3 3

1 2

4 4

1

5

→ →

↓

� � �

� �

�

5

1

5

2

− 5

2

5

1

−

We know we can put each of these sets, Q+ and Q–, in 1–1 correspond-
ence with N. We also know that the set of evens, , and the set of odds, 
O, are in 1–1 correspondence with E. Transitivity and interleaving to 
the rescue: match the positive rationals, Q+, with the even naturals, E, 
by way of that zigzag; and the negative rationals, Q–, with the odds, O, 
in the same way. Then shuttling back and forth between odds and 
evens will put the totality of Q+ and Q– in 1–1 correspondence with N.

We have left out zero, and make good our omission by bumping the 
correspondence of Q– with the odds over one, leaving the natural number 
1 with no partner. Pair it up now with 0. This counts all of Q, as desired:

N Q
1 ↔ 0

2 ↔ 1

1

3 ↔ −1

1

4 ↔ 2

1

5 ↔ −2

1

6 ↔ 1

2

7 ↔ −1

2

8 ↔ 1

3

9 ↔ −1

3

10 ↔ 3

1

11 ↔ −3

1

.

.
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on better terms with subscripts after the adventures of Chapter 
Six, let a

11
 stand for the digit in the fi rst decimal place of the fi rst 

entry, a
12

 for the second digit there, and so on:

1 ←→ 0 . a
11

 a
12

 a
13

 a
14

 . . .

The decimal matched up with 2 in our puzzling list will have 
entries a

21
, a

22
, and so on:

2 ←→ 0 . a
21

 a
22

 a
23

 a
24

 . . .

so that the supposed one-to-one pairings-up of all the naturals 
with all the reals in (0, 1) will look like this:

1 ↔  0 . a
11

a
12

a
13

 a
14

 . . .

2 ↔  0 . a
21

 a
22

 a
23

 a
24

 . . .

3 ↔  0 . a
31

 a
32

 a
33

 a
34

 . . .

4 ↔  0 . a
41

 a
42

 a
43

 a
44

 . . .

.

.

Each entry continues forever (i.e., with as many decimal places as 
there are counting numbers), and there will be as many entries on 
the list as there are counting numbers.

We are supposing that this list is complete: every real in (0, 1) is 
somewhere on it, hence there are no forgotten or neglected real 
numbers in this interval that can be added on at the end—and a 
good thing too, since the list has no end. We are also supposing 
that no entry appears here twice: any two decimals listed must 
differ in at least one decimal place ( 1

9 , for example, is listed some-
where: its decimal form is 0.1  that is, 0.11111 . . . forever; and here 
too is the decimal with 1 in every decimal place—except for a 0 in 
the 93,247th place).

Now comes the diagonal stroke of genius. That fi rst decimal 
place in the list’s fi rst entry, a

11
, must, of course, be one of the digits 

from 0 to 9: for example, it is either 5, or not. Cantor asks us to 
create our own decimal number between 0 and 1 as follows. Like 
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those on the list, it too will begin “0.”, but its fi rst decimal place 
will be determined by what a

11
 is. If a

11
 is 5, our number will have 

a 6; but if a
11

 isn’t 5, we put a 5 in the fi rst place of ours.
So far our decimal looks either like this: “0.6” or like this: “0.5”.
To decide whether to put a 5 or a 6 in the second decimal place 

of ours, look at the second entry in the second decimal on the list: 
a

22
. Again we act contrariwise: if a

22
 is 5 we will have 6 in our 

second decimal place; but if a
22

 isn’t 5, 5 goes there in ours. We 
thus have 0.65, 0.66, 0.55, or 0.56, depending on what a

11
 and a

22
 

were.
Continue fi lling the successive decimal places of our number 

with 5 or 6 in this mechanical way, looking at a
33

 for our third 
place, a

44
 for our fourth, and in general, sliding gracefully down 

this diagonal:

0 . a
11

a
12

a
13

 a
14

 a
15

. . .

0 . a
21

 a
22

 a
23

 a
24

 a
25

. . .

0 . a
31

 a
32

 a
33

 a
34

 a
35

. . .

0 . a
41

 a
42

 a
43

 a
44

 a
45

. . .

0 . a
51

 a
52

a
53

 a
54

 a
55

. . .

whatever fi lls the nth decimal place of the nth entry, a
nn

, deter-
mines whether we put 5 or 6 in the nth place of ours.

The real number we are building up has only 5s and 6s in its 
decimal places, and might begin like this:

0.55666565656656555 . . .

Whatever it looks like, it is a perfectly good real number, some-
where to the right of center in (0, 1): more precisely, it will be 
between 5

9  .5=  and 6
9  .6= .

Notice, however, that it can’t possibly be the fi rst entry on the 
list, since it differs from that entry at least in the fi rst decimal place. 
It can’t be the second entry either, differing as it does from it in at 
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least the second decimal place; 
nor the third, for the analogous 
reason, nor the fourth—nor the 
nth. It cannot, in fact, be 
anywhere on this list that was 
supposed to contain all of the 
reals in (0,1) because it differs 
from every entry on it in at least 
one decimal place—and that is 
the contradiction.

This proof—as simple and 
subtle as all great art—throws 
open the gates to what Hilbert 
called Cantor’s Paradise. If we 
can compare infinite cardi-
nalities—if we understand 
the proof to show that there 

are more real numbers in (0,1) than there are naturals alto-
gether—then we have just found a second and larger size of 
infinity (and the hairs on the back of the neck stand up at the 
hint of perhaps more). It is hard to think of a comparable 
shock to the life of the mind (unless it be the revelation that 
others think “I”).

 

Now we can return to Galileo’s shorter and longer line-segments. 
The open interval (0, 1) has more points on it than all the counting 
numbers in the world, although there is no end of them. What 
about the longer segment (0, 2)? An astonishingly simple proof—
another “Look!”—shows that this longer segment contains just as 
many points as the fi rst: there is a 1–1 correspondence between 
them.

Center the fi rst segment above the second, and for the sake of 
the proof put on their missing end-points:

Cantor in middle age.
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We know from the previous chapter what to do with these two 
lines: fi nd their center of perspectivity, P:

Now project the smaller interval onto the larger from P: each 
point in it matches up with a unique point on the other—and vice 
versa:

This projection establishes a 1–1 correspondence between them: 
the midpoint, 1

2 , of the fi rst segment matches up with the 
midpoint, 1, of the second, and trigonometry will, if you want, 
give you the rest of the match-ups—but de minimis non curat 
Cantor. You may now eliminate the end-points of each, but leave 
the P they created: it still shows that the cardinality of (0, 1) and 
of (0, 2) are the same.

Why stop here? Take some very short open interval, like (5, 5.1) 
and some very big one: (–3,000, 1,000,000). The same projection 
establishes the 1–1 correspondence between their elements:

–
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The number of points on the horizontal bar of the t in “horizon-
tal” has exactly as many points on it as the line from the earth to 
Alpha Centauri. “How many” has nothing to do with “how long.”

If space was created for feeding the imagination of geometers, 
counting was created for feeding Cantor’s. The points on any line-
segment are gigantically equinumerous with those of any other—but 
what about the points on the entire real line, disappearing to negative 
and positive infi nity? How can we show that the entire line has as 
many points altogether as even on the merest smudge of one of its 
segments—or that it has more? The proof by projection no longer 
works because the real line lacks end-points to pull up the sight-lines 
from. Here is ingenuity raised to the 13th power (“What lack we yet,” 
as Cardano said of another ingenious contrivance, “unless it be the 
taking of Heaven by storm?”). Bend the open interval (0, 1) up into a 
semicircle and let the real line lie somewhere below it:

Now place your light source, or point of view, in that hollow 
bowl, midway between its missing end-points.

Each point of the open interval will correspond to a unique real, 
each real to a unique point of the interval. Since the interval and 
the real line are open (have no end-points), this match-up will 
work for every point on each. The cardinality of the reals is the 
same as that of any open interval of the reals.
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suddenly lengthen. Picture, then, trying to set up a one-to-one 
correspondence between the points on the plane and those of the 
line—or to use the successful earlier tactic, between all the points 
in some neatly confi ned corner of the plane and part of the line—the
“open unit square,” perhaps, tucked into the fi rst quadrant: all
the points, that is, above the x-axis and below the line y = 1, and
to the right of the y-axis and left of the line x = 1:

could these be unequivocally corresponded to the points in (0, 1) 
that this open square rests on?

The diffi culty that seems insuperable is that each point of the 
square has two coordinates, and each point of the line only one. 
How could you fi nd a unique point in (0, 1) to match up with a 
point in the square such as (0.3750, 0.9140286. . .)? You clearly 
couldn’t send this pair of reals just to its x-coordinate, for then 
every point in the square with the same x-coordinate would go 
there too and the correspondence would be far from one-to-one.

You couldn’t send the two coordinates to their sum, since again 
many other points in the square would have coordinates that 
added up to the same value. Subtraction, multiplication, division 
of one coordinate by the other, or raising one to the power of the 
other all had the same fatal fl aw.

Pressing the other line of attack seemed much more promising: 
assume a 1–1 correspondence and let it lead you to a contradic-
tion. But this too went nowhere. Half a year later Cantor wrote to 
Dedekind again, asking him if he too was having diffi culties with 
this—and adding that friends in Berlin said the whole business 
was absurd, since obviously two coordinates couldn’t be matched 
up with one.
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plane whose x-coordinate comes from the original point’s odd-
numbered decimal places, the y-coordinate from the even-
numbered. So 0.29476583 corresponds to the point with coordi-
nates (0.2468, 0.9753).

Dedekind wrote back immediately, congratulating his friend, 
but pointing out a technical problem which Cantor was later able 
to overcome (see the Appendix for the diffi culty and its resolu-
tion). Diagnostic of the mathematician’s faith in pattern was 
Cantor’s postcard reply to Dedekind on June 23: “Unfortunately 
your objection is correct; fortunately it affects only the proof, not 
the conclusion.” Aren’t conclusions supposed to follow from 
proofs? Not if seeing has now replaced believing, making you know 
you are right. Proofs, like coats, can always be cut to fi t your cloth. 
So in 1919, when Einstein received a telegram saying that astro-
nomical observations had confi rmed his theory of relativity, a 
doctoral student asked what he would have done had his predic-
tions been refuted? “In that case,” Einstein replied, “I’d have to feel 
sorry for God, because the theory is correct.”

When Cantor published his revised proof, some—like the 
French mathematician Paul Du Bois-Reymond—objected that 
it was “repugnant to common sense.” But Cantor had long since 
left the hearth of common sense to watch the aurora borealis of 
a distant sky, and brave were those both willing and able to 
follow him.

Since we know that (0, 1) ←→ R, Cantor’s proof meant that the 
cardinality of the square isn’t greater than but the same as that of 
the reals. And larger open squares? As before, projection gives the 
1–1 correspondence between all their points and those of the open 
unit square:
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As for the open unit square and the whole two-dimensional 
plane, or R2, the cupping technique used in one dimension gener-
alizes here:

What then of all the points in three-dimensional space? Each 
such point has three coordinates (length and width away from the 
origin and height above it). Simply weave those three coordinates 
together in a triple braid:

(0.a
1
a

2
a

3
a

4
. . ., 0.b

1
b

2
b

3
b

4
. . ., 0.c

1
c

2
c

3
c

4
. . .)

↓
(0.a

1
b

1
c

1
a

2
b

2
c

2
a

3
b

3
c

3
a

4
b

4
c

4
. . .) .

So all of three-dimensional space has the same cardinality as the 
line. There are just as many points in the infi nite universe as on the 
horizontal bar of this t.

And what about the imaginable but ungraspable points of four-, 
fi ve-, . . . , n-dimensional space: you can weave the four, fi ve, or n 
coordinates of each of their points into a braid with the appropriate 
number of plaits, to get the same 1–1 match-up with the points on a 
line. “How many” has nothing to do with “how many dimensions.”

This revelation startled Cantor as much as it does us. He had 
found two sizes of infi nity, and as anyone who indulges in count-
ing expects, where there are two there must be many more. Yet if 
the mind and the universe were divided, like Gaul, into three parts, 
he had conquered them all: the fi nite, the countable, and the 
continuous. You see why we said before that Cantor had done infi -
nitely more than make sense of pairing numbers with their squares.

If you pause now to ask how he won his insights, the answer 
must surely involve a pioneer’s love of freedom more than comfort. 
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and eight is greater than three.
Is it always true that a set has more subsets than it has elements? 

Let’s step back before leaping forward. If S = {a, b} it has four 
subsets:

and if it has just one element, S = {a}, then it has two subsets:

; {a}
1       1
∅

Even the empty set, with no elements whatsoever, has one subset, 
namely, the set itself:

1
∅

(people bothered by thinking of the whole set as a subset of itself 
sometimes distinguish this courtesy case by calling all the others 
“proper subsets”).

If we put our results in order, what begins to take shape is the 
triangle Pascal invented to count combinations (though it was Jia 
Xian’s triangle, six centuries before it was Pascal’s—and al-Karaji’s 
before Jia’s . . .):

1
1 1

1 2 1
1 3 3 1

•
•

Here—if we call the top row row zero—the entries in the nth row 
add up to the number of subsets of a set with n elements.
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The spirit of this diagonal came to haunt all of his subsequent 
work—and after him became the controlling presence behind the 
foundations of modern mathematics.

We have just seen that the number of subsets outraces the 
number of elements in any fi nite set—but what if S were infi nite? 
Well, assume that S in fact has exactly as many subsets as it has 
elements. That means you can make a 1-1 correspondence between 
them. Just as in the proof that the reals were uncountable, we can’t 
specify beforehand what this correspondence is, since the proof 
must work for any possible correspondence. We are simply assum-
ing that somehow each element of S matches up with one and only 
one of the subsets of S, and likewise that each of these subsets 
corresponds to a unique element of S. This will be true, we are 
assuming, whether S has as many elements in it as do the naturals, 
or as many as the reals—or in fact, has any cardinality whatever.

The empty set will appear in the list of subsets, of course, as will 
the whole set S, and the “singleton” subsets each with only one 
element, the subsets of all possible pairs, triples, and so on: they 
will all be there, along with the subsets formed in any way at all.

Trying to imagine such a correspondence is more mind-expanding 
than any drug in the hippie pharmacopoeia, but as a feeble help you 
might picture part of such a list as looking like this:

Elements of S Elements of P S : The Set of All Subsets of S

f ↔ {g, j}
g ↔ Ø
h ↔ S
i ↔ {every element in S except i}
j ↔ {g, h, j, l}
k ↔ {k}
l ↔ {g}
. . .
. . .

However the inventory is made, you will observe that an element 
of S either is or is not matched up with a subset of S that contains 
it (this is the same “diagonal” trope that lay behind the decimal 
made, in the earlier proof, of 5s and 6s). In our example, h, j, and k 
are matched with subsets containing them; f, g, i, and l aren’t.
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Now, says Cantor, all the elements of S that aren’t in the subsets 
they correspond to on this putative list constitute a subset of S! 
They must: they form a collection drawn from the elements of 
S—and any such collection (no matter by what clear rule it is 
made) is a subset of S. Call this subset M. M must therefore appear 
somewhere on the list, matched up with some element of S: call
it w.

Elements of S Elements of P S : The Set of All Subsets of S

. . .

. . .
w ↔ M
. . .
. . .

w must be a member of M or not; there is no third possibility.
But if w is an element of M, then it is in the subset it is matched 

up with. Yet M is the subset only of those elements in S that aren’t 
in the subset to which they correspond. Hence w cannot be in M.

If it isn’t in M, however, it isn’t in the subset to which it corre-
sponds on this list—and so it must be in M!

This contradiction shows that M (which seems like a perfectly 
good subset of S) isn’t anywhere in the supposed 1–1 correspond-
ence; yet it must be. That contradiction shows that such a corre-
spondence is impossible, so the cardinality of PS can’t be the same 
as that of S. Since PS contains at least as many subsets as there are 
elements in S (the singleton subsets in PS are equinumerous with 
those elements), we can only conclude that the cardinality of PS is 
greater than that of S (with 2n in mind, we could write the cardi-
nality of PS as 2 cardinality of S).

 

There are infi nitely many counting numbers. There are yet more 
reals. Now there are more subsets of the reals than reals them-
selves. Take this new set PR: it begets a set with higher cardinality 
still—the set of all its subsets—and this iteration won’t stop. 
Cantor had found new kinds of numbers and now needed to learn 
how they behaved. Each larger number is as perplexing as 7 is to 
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the new ordinals may now seem more comfortable still. ω is the 
limit which the fi nite ordinal numbers increase toward but never 
reach (just as 1

2 , 2
3 , 3

4 , 4
5 , . . . approaches but never reaches 1). And in 

fact, whenever there is no largest member in a succession of ordi-
nal numbers, “then a new number is created,” Cantor wrote, 
“which is thought of as the limit of those numbers, i. e., it is defi ned 
as the next number larger than all of them.” Surely one of the most 
understated uses of “i. e.” on record.

Now he could play his two generative principles off against one 
another to extend the ordinal numbers boundlessly beyond the 
fi nite into what he called the Transfi nite.

1, 2, 3, . . . ω
ω + 1, ω + 2, ω + 3, . . . ω + ω
ω + ω + 1, ω + ω + 2, ω + ω + 3, . . . ω + ω + ω

.

.
ω · ω = ω2

ω3

.

.
ωω

.

.

.

But where are the cardinal numbers in all this splendor? We 
warned you that once past the fi nite, the pleasing coincidence of 
ordinal and cardinal might peter out—and it has. Every one of 
these infi nite sequences is countable: it can be put, that is, into a 1–1 
correspondence with the natural numbers! How can this be?

Take, for example, ω + 1, which is the next number in order 
after ω—itself the fi rst ordinal after the fi nite ordinals. ω + 1 there-
fore stands, as you saw, for a set with all the natural numbers in 
it—and one element more. But counting “how many” is no 
respecter of order, so we may match up the elements in the 
sequence

1, 2, 3, . . . , a
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with the counting numbers by starting with a:

Ordinal a 1 2 3 . . .

� � � �

Cardinal 1 2 3 4 . . .

The sequence whose ordinal number is ω + ω we could count 
this way:

Ordinal 1 2 3 . . . a
1

a
2

a
3
 . . .

� � � � � �

Cardinal 1 3 5 . . .  2  4  6 . . .

The reason for Cantor’s dozen-year digression into ordinal 
numbers was to bring order to the cardinals. What he discovered 
was that the whole set {ω, ω + 1, . . . , ω + ω, . . . , ω + ω + ω, . . . , ω2, 
. . . , ω3, . . . , ωΩ, . . .} was not countable—and it was the fi rst uncount-
able set after each of its countable members (just as ω was the fi rst 
countably infi nite ordinal after each of the fi nite ordinals 1, 2, 3, . . .).

It was now that he reached for a name to distinguish these 
plateaus, these sizes, of ordinal—

ω, ω + 1, ω + 2 . . .

•

•

•

4

3

2

and having used up the last Greek letter ω for them, he turned 
back for these transfi nite cardinals to the fi rst letter of the Hebrew 
alphabet, aleph: ℵ. As with everything he did, there were reasons 
behind the reasons for his choice. Aleph, as he said, itself repre-
sented “one” in Hebrew, and these new symbols marked a new 
beginning for his own work and for mathematics. Was there also 
here a private nod toward what he took to be the divine source of 
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wonderful vistas opened at every bend. Dedekind said that for him 
a set was a closed bag with specifi c things in it which you couldn’t 
see and knew nothing about, except that they were distinct and 
really there. A few minutes passed. Cantor, immensely tall, fl ung 
out his arm toward the wild landscape: “A set,” he said, “I think of 
as an abyss.”

 

The question of infi nity had brought mathematics to the 

edge of uncertainty.

—Joseph Warren Dauben

Cantor struggled doggedly to prove his Continuum Hypothesis, 
that the cardinality of the continuum was ℵ

1
. Elation alternated 

with longer and longer depressions lit fi tfully by promising strate-
gies that one after another fl ickered out. He was hospitalized again 
and again. Why had he ever as a young man given up music for 
mathematics, he now wondered, recalling the days when he had 
played the violin and formed his own string quartet. Having 
broken with so many of his colleagues over the years, he continued 
to thank his wife for each dinner she provided and to ask her at its 
end whether she still loved him.

He began to concern himself 
with the Rosicrucians, and 
Theosophy, and Freemasonry—
and with proving that 
Shakespeare’s plays had really 
been written by Sir Francis 
Bacon. He hinted darkly that he 
had made certain discoveries 
concerning the fi rst king of 
England “which will not fail to 
terrify the English government as 
soon as the matter is published.”

Form always seeks substance, 
and in doing so begets ever 
more shadowy forms. Sets 
behind numbers, inconsistent 

Cantor, a few months
before his death.
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