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to an area of the frontal lobes conveniently located in between tune 
and space (“locality”) (Figure 1.1). According to one phrenology text, 
“The office of this faculty is to mark the passage of time, duration, 
succession of events, etc. It also remembers dates, keeps correct time 
in music and dancing, and induces to punctuality in the fulfillment 
of engagements.”8 

Figure 1.1: A phrenology chart from the nineteenth century.

William James, one of the fathers of modern psychology, also rec-
ognized the importance of time to understanding the mind. Indeed, 
he devoted a chapter of his magnum opus, The Principles of Psychology 
(published in 1890), to the perception of time. Oddly, since then few 
landmark books in psychology or neuroscience have done the same.9 
Indeed, throughout most of the twentieth century, the problem of 
time was somewhat neglected and largely omitted from textbooks. 

I am oversimplifying a bit. First, the problem of time in neurosci-
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the past and future) is a nonstarter. Technical considerations, such as 
whether it is possible to build a time machine or whether the laws of 
physics allow it, are irrelevant; one simply cannot travel to a time that 
does not exist any more than one can travel to a place that does not 
exist. Under eternalism, time is a dimension much (but not exactly) 
like space, so the universe is a four-dimensional “block”—one in 
which the past and future are as real as locations north and south 
of you. Although eternalism is agnostic as to whether time travel is 
achievable, it validates the discussion because there would be “places” 
(moments) in time to travel to. 

Presentism certainly conforms to our intuition that as each instant 
of our lives transforms into a past moment, it is gone. Whether or 

Figure 1.2: Two views of the nature of time: presentism versus eternalism. 
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apses, the interface between two neurons: a presynaptic neuron that 
is sending a signal out and a postsynaptic neuron that is receiving the 
signal. The inputs to any given neuron come from its presynaptic 
partners, each providing bioelectrical whispers. Excitatory synapses 
encourage the postsynaptic neuron to “fire”—that is, generate an out-
put by sending an electrical signal to all its downstream neurons (its 
own postsynaptic partners). In contrast, inhibitory synapses attempt 
to persuade the postsynaptic neuron to keep quiet. With so many 
neurons the nervous system is the wiring diagram from hell. What 
determines which neurons are connected to which? 

For an oversimplified analogy we can look at the World Wide 

Figure 2.1: Neurons and synapses. Image of two cortical neurons. The axon of the lower, 
presynaptic neuron connects to a dendrite of the upper, postsynaptic neuron via 
a synapse (not visible). An action potential—a fast “spike” in the voltage—in the 

presynaptic neuron produces a small increase in the voltage of the postsynaptic neuron 
(called an excitatory postsynaptic potential, EPSP). (Modified with  

permission from Feldmeyer et al., 2002)
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preferentially strengthen the A→B synapse and weaken the B→A syn-
apse. It took neuroscientists a surprisingly long time to hit upon this 
simple learning rule. It was only in the 1990s that STDP was con-
clusively demonstrated.14 Hume would have approved the rule imple-
ments a neural cause-and-effect detector. If neuron A fires before 
neuron B fires, it likely contributed to the firing of B—so this syn-
apse is strengthened. Whereas the B→A synapse is always wasting its 
breath—like someone always reminding you to lock the door after 
you’ve already locked the door—so it is weakened (and may eventu-
ally disappear all together). 

Figure 2.2: Spike-timing-dependent plasticity. Two neurons reciprocally connected to 
each other by two synapses (represented by the black triangles). If the lower neuron 

consistently fires before the upper one, the synapse from the lower to the upper 
neuron will get stronger (synaptic potentiation), and the synapse from the upper to 

lower neuron will get weaker (synaptic depression).

It is believed that the ability of synapses to learn cause-and-effect 
relationships between neurons is in part responsible for the brain’s 
ability to learn relationships between events in the external world. In 
our example, the STDP learning rule may help create neurons respond 
to the sequence z-o-e, but not the rarely heard e-o-z—and thus help 
Zoe learn to recognize her name. But STDP is simply one of many 
learning rules in the brain’s arsenal. Indeed, STDP operates near the 
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cues, most importantly sunrise and sunset. But experiments similar 
to those shown in Figure 3.1 established that even in the absence of 
external cues, animals continue to exhibit daily oscillations in their 
sleep, activity, eating, and body temperature. These cycles prove that 
there must be some internal clock—a circadian clock (circa meaning 
approximately, and dian meaning day)—governing the daily rhythms 
of our lives.

How good is the circadian clock, and how does it compare to 
man-made clocks? The performance of clocks, whether of the biolog-
ical or man-made variety, can be measured by both their precision 
and their accuracy. Precision refers to the average deviation over many 
cycles of the oscillator, while accuracy refers to how close the average 
period is to some target or desired period. If the swing of a pendulum 
should be 1 sec, but its mean period is 0.8 seconds, it is not very accu-
rate (off by 20 percent). But if over tens of thousands of swings the 
minimal and maximal period remain between 0.79999 and 0.80001 
seconds, it is nevertheless very precise. As can be seen from Figure 3.1, 

Figure 3.1: Running wheels and actograms. The nocturnal activity of a mouse is indicated 
by the black tick marks, which represent the revolutions of a running wheel. If mice 

are kept in constant darkness, their circadian rhythm continues with a period of 
approximately 23.5 hours, resulting in a progressive leftward shift of the activity 
pattern. Actograms are double- plotted, meaning that the same 24-hour period is 

represented at the end of a row and the beginning of the row below it.  
(Modified from Yang et al., 2012 under CC BY license)
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of the experiment was to do this under two conditions: one in which 
the lights were turned on and off every 11 hours for an artificial day 
of 22 hours (close to the natural period of the 23-hour cyanobacte-
ria), and in the other every 15 hours to simulate a 30-hour day. The 
researchers found that after a month the cultures kept on a 22-hour 
cycle were dominated by the short-period strain. In contrast, when the 
cultures were kept on a 30-hour cycle, the long period strain was the 
victor.10 A rhythm of 22 hours in a 30-hour day, or of 30 hours in a 
22-hour day, resulted in cellular rhythms that were always going in 
and out of phase with the light and that were less efficient at extracting 
energy from light. Therefore, it is not sufficient to have a circadian 
clock—the period of the clock must resonate with the natural cycle of 
the environment in order to provide an evolutionary advantage. 

Optimizing photosynthesis is one reason single-cell organisms 
benefit from having a circadian clock, but it may not have been the 

Figure 3.2: Fast and slow circadian rhythms in cyanobacteria. The circadian rhythms of two 
strains of cyanobacteria with periods of approximately 23 and 30 hours. The bacteria 
were genetically engineered to emit light in a manner proportional to the concentration 

of a specific protein. When these strains are forced to compete with each other for 
resources in an environment with a 23-hour light-dark, the 23-hour strain will win; in 
contrast, if they are placed in a 30-hour light-dark cycle, the 30-hour strain will win. 

(Adapted with permission from Johnson et al., 1998)

23-hour strain

30-hour strain

YourBrainIsATimeMachine_txt_final.indd   44 12/16/16   3:03 PM



64    /    Y O U R  B R A I N  I S  A  T I M E  M A C H I N E

CHRONOPHARMACOLOGY

As the cartoon in Figure 4.1 reminds us, our sense of time can be 
radically influenced by psychoactive drugs. Not surprisingly, this last 
fact did not escape the attention of William James, who alludes to 
this through personal experience: “In hashish-intoxication there is a 
curious increase in the apparent time-perspective. We utter a sentence, 
and ere [before] the end is reached the beginning seems already to 
date from indefinitely long ago.”13 Indeed, people often report that 
smoking marijuana seems to result in time slowing down. There is an 
anecdote of two hippies, high on marijuana, sitting in Golden Gate 
Park as a jet zooms by overhead; one of them says to the other, “Man, 
I thought he’d never leave.”14 

Before we go on, it should be noted that statements about time 
slowing down, flying by, dragging, dilating, or speeding up can be 
very confusing15—particularly when one makes the mistake of stop-
ping to think about what such statements actually mean. Take the 

Figure 4.1: (Paul Noth/The New Yorker Collection/The Cartoon Bank)
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ms, is referred to as delta-t (∆t). If, presented with intervals of 100 and 
125 milliseconds, the participant always correctly identifies the longer 
interval, we can conclude that her internal timer has a resolution of 
better (less) than 25 milliseconds.

Figure 5.1: Interval Discrimination Task. 

By varying the value ∆t it is possible to estimate the precision of 
the brain’s timers. We first estimated the threshold of subjects on stan-
dard intervals of 50, 100, 200, and 500 ms. The first thing to note 
is that these thresholds were very different for each standard inter-
val, this is a general property of how humans discriminate stimuli of 
different magnitudes. You can probably tell the difference between 
two objects that weigh 100 and 125 grams, but not between objects 
that weigh 1,000 and 1,025 grams. Generally speaking, what matters 
is not the absolute difference between the two stimuli, but the rela-
tive ratio between them. The interval discrimination thresholds were 
around 15 to 25 percent. For example, for the 100 ms standard inter-
val the average interval discrimination threshold was 24 ms, meaning 
that on average people could reliably discriminate 100 from 124 ms. 
After getting this baseline data on the first day of the study, the sub-
jects underwent a ten-day training period in which they practiced dis-
criminating the 100 ms intervals for an hour a day. After this practice 
period, the subjects’ timing did indeed improve, the average threshold 
for the 100 ms standard fell from 24 to 10 ms. This suggests that 
practice does somehow improve the quality of the timers within our 
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the neuroscientists Michael Long and Michale Fee, both at MIT at the 
time, reasoned that if HVC neurons were causing the timing of the 
song, then if the pattern of activity of those neurons was slowed down, 
the birds should sing in slow motion.20 

Figure 5.2: Synfire Chain. In a synfire chain model individual neurons (or groups of neurons) 
are connected in a feed-forward fashion. Activity—action potentials represented by 

“spikes” in voltage—propagates throughout the network much like a pattern of falling 
dominos. Time from the activation of the first neuron in the chain can be encoded  

by which neuron is currently active.

Slowing the activity of a group of neurons is a delicate endeavor, 
but it is possible to do by manipulating the local temperature of a 
targeted area of the brain. Cooling biological tissue generally slows 
its metabolism and rate of activity. The same is true of neurons. For 
example, in ectothermic (“cold-blooded”) animals the speed at which 
an action potential travels along an axon and even the duration of 
the action potential itself can depend on external temperature (this is 
one reason endothermic animals generally have quicker reflexes than 
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Let’s consider one more simple example of how a physical system 
that changes in time could potentially be used to tell time. Envision 
a child sliding down a waterslide: if she goes down starting from the 
same initial position every time, she will take approximately the same 
amount of time to reach the bottom. We could thus mark the slide 
with lines representing one-second intervals, which would have small 
spacings at the top, and larger spacings at the bottom to account for 
her increasing speed as she moves down the slide. Thus, as the child 
crosses each line we could call out how much time has elapsed since 
she started. 

Our child-on-a-slide timer is driven by gravity, much like a water 
clock or an hourglass.  Such timers might not seem particularly pre-
cise, but consider that the top eight men in the downhill skiing com-
petition of the 2014 Winter Olympics made it down within a half a 
second of each other. The top eight times ranged from 2:06:23 to 
2:06:75, an accuracy of less than 0.4 percent—better than any clock 
invented before Huygens’s pendulum clocks.

Figure 6.1: Ripples. Time is naturally encoded in 
the state of dynamical systems. Here it is clear 

which raindrop fell first, and it would be possible to 
estimate the interval between the raindrops.
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deflection depends on the interval between a pair of spikes; generally 
the effect is maximal at intervals below 100 ms, and fades away after 
a few hundred milliseconds. What this all means is that much as the 
diameter of the leading wave of a ripple on the pond contains infor-
mation about how much time has elapsed since a raindrop fell, the 
strength of a synapse at any given moment contains temporal infor-
mation about how long ago that synapse was last used.

Figure 6.2: Short-term synaptic plasticity. On the time scale of milliseconds  
the strength of a synapse can undergo short-term depression (above) or  

short-term synaptic facilitation (below). (Traces from Reyes and Sakmann, 1999)

I have proposed that short-term synaptic plasticity and other 
time-dependent neuronal properties may contribute to the brain’s 
ability to tell time on the order of hundreds of milliseconds.6 Consider 
the simplest neural circuit possible: two neurons connected by a single 
synapse (Figure 6.3). Let’s assume that the presynaptic neuron fires 
at one of three different temporal patterns: two spikes separated by 
an interval of either 50, 100, or 200 milliseconds. We can think of 
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these intervals as temporal stimuli—indeed, some animals communi-
cate with “clicks,” brief bursts of sounds in which the interval between 
the clicks conveys information. For each of these three intervals, the 
voltage change produced by the first spike will be the same—and we 
will assume that the “strength” of this spike is 1 millivolt. Because of 
short-term synaptic plasticity the strength of that same synapse will 
be different at the time of the second spike. Specifically, the change 

Figure 6.3: Interval selectivity based on short-term synaptic plasticity.  

A. In this simulation of a simple neural circuit, a single input neuron contacts an 
excitatory (top) and inhibitory (bottom) neuron. The traces capture the voltage 
deflections in response to three different intervals: the input neuron fires two 
spikes separated by 50, 100, or 200 ms. The synapses from the input onto 

both neurons undergo short-term facilitation—for example, the amplitude of the 
voltage signal in response to the second spike of a 50 ms stimulus is  

larger than the voltage deflection caused by the first spike. 
B. Depending on the strength of the synapses from the input to the excitatory 

and inhibitory neurons, the excitatory neuron can selectively respond to  
a 50 (left) or 100 ms (right) interval—thus the excitatory neuron in this simple 

circuit can, in a sense, tell time. 
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necting the dots at each point in time, we can visualize the trajectory 
of the building: how the state of the building changes over time. So 
even though the building was not designed to be a clock, you can see 
that as long as it has its own internal dynamics (changing patterns of 
lights), we could use it to tell time. 

Figure 6.4: Encoding time in the changing states of the windows of a building. The states of the 
three windows at each point in time (shown in the table on the left) are equivalently 

represented as a trajectory in 3D space (right).

EVENT-SPECIFIC CLOCKS

We can now see how a changing pattern of active neurons can poten-
tially be used as a timer. But a key insight provided by Michael Mauk’s 
theory is that a circuit composed of a large number of neurons is not 
just one timer, it is many. The advantages of having the same circuit 
function as a multitude of different timers might not be immediately 
clear, but this strategy creates a more powerful computational system. 

You may have a timer in your kitchen that can be set to time how 
long to cook a soft-boiled egg, boil pasta, or bake a cake. Another 
strategy would be to have three different timers, one for each goal—
and each timer could have a different alarm sound. Having these 
three devices on your countertop may seem cumbersome, but this 
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event-specific setup has an important advantage: if you walk into the 
kitchen and hear an alarm go off, you immediately know what to turn 
off or take out of the oven. In other words, event-specific timers also 
serve as a memory of the events that are currently transpiring. 

To better understand the value of having multiple timers within a 
single neural circuit, let’s imagine thousands of LED lights wrapped 
around a Christmas tree, and let’s suppose the pattern of illumination 
of the lights changes in some consistent pattern every time we flip the 
switch. We can imagine many different types of patterns: a simple 
chain of blinking lights or, like the windows in our skyscraper, some 
highly complex time-varying pattern. The advantage of the first, 
chain-like, pattern is that the code is trivial to read—the first light 
represents t=1, the second t=2, . . . . The disadvantage is that there is 
only one such pattern—so there is only one timer. In contrast, com-
plex patterns are hard to read, but the same bank of lights could be 
used to create an enormous number of timers. 

Perhaps our bank of Christmas lights has two switches, one con-
trolled by Alice and one by Bob. Perhaps Alice’s switch activates the 
following spatial patterns of lights at 1 sec intervals (where each num-
ber represents the position of the light in the chain):

t =1          5  10  15  20
t =2          6  12  18  24
t =3          7  14  21  28

. . .

whereas Bob’s switch produces the following sequence of illumination 
(note that in this example each pattern follows a specific algorithm):

t =1          1  2  3  4
t =2          1  4  6  8

	 t =3          1  6  9	12
. . .
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ations in the value of x can produce dramatic differences in future 
values of x.

Note that we can use the table in Figure 6.5 as a timer of sorts. 
If you know that that the initial value of x was 0.9900, and I tell you 
the current value is 0.5471, you know that sixteen time units have 
elapsed. So in principle we could use a physical system that obeys this 
logistic equation as a clock. The problem is, however, that this sys-
tem is extremely sensitive to noise or tiny errors in measurement. For 
example, if in our second run x started at 0.99001 instead of 0.9900, 
the value at time step 16 is 0.7095, rather than 0.5471. The state of 
a chaotic system, the value of x in this example, diverges quickly as a 
result of tiny perturbations, meaning that in practice the system does 

Figure 6.5: Example of an equation that exhibits chaos. In this equation the value of x at each 
subsequent time step (t +1) is determined by the value of x at the current time step (t ). 
Even when starting with two close values of x in Run 1 and Run 2 (0.99 and 0.99001, 
respectively), the values of x will diverge over time, as shown in the table and graph.  

The divergence will be imperceptible at first, but after eighteen steps or so  
the values of x in both runs will be unrelated to each other.
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tial state of all the neurons in the simulated network. From this initial 
state onward, a dynamically changing pattern of activity unfolds in 
time—that is, the network autonomously travels along a trajectory laid 
out in 800-dimensional space. We can visualize a simplified version of 
this trajectory in 3D space over multiple trials. Now, to tap into the 

Figure 6.6: A recurrent network that generates a time-varying motor pattern. In this simulation 
a recurrent neural network is composed of interconnected units representing neurons 
(schematized in the middle of the top panel). The units in the recurrent network receive 
a brief input signal, and contact two output units. The activity in these two output units 
corresponds to the positions of a pen on the X and Y axes of a graph. Training consists 

of tuning the weights of the connections of the recurrent units onto the output units 
with a learning rule. After training, in response to a brief input the recurrent network 

generates a complex pattern of activity that drives the outputs in a manner that writes 
the word “Chaos.” Motor patterns, such as handwritten digits, are inherently temporal, 

so the network also encodes time. The shaded dots imposed on the lines represent 
time. The network is not chaotic, as demonstrated by the fact that the motor pattern 

recovers after perturbing the recurrent network during the upswing of the “h” (ten trials 
are overlaid). (Modified from Laje and Buonomano, 2013)
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plus of bugs, limitations, and inherent biases. As a gratuitous example 
of a task that the brain performs poorly, try mentally adding the fol-
lowing sequence of numbers: 

	 1,000 + 
	 40 + 
	 1,000 + 
	 30 + 
	 1,000 + 
	 20 +
	 1,000 + 
	 10

More often than not people arrive at the answer of 5,000, instead 
of the correct answer of 4100. Why is the brain so poor at simple 
numerical calculations when by any measure recognizing a face or 
reading this sentence is a far more complex computational task? The 
standard, but partial, answer to this question is that there was little 
selective pressure to perform numerical calculations. The full answer 
runs a bit deeper. The building blocks of any computational device—
be it the brain or a digital computer—shape which tasks it is well 
suited (or ill suited) to perform. No human will ever outperform the 
simplest calculator in long division, because neurons are slow and 
noisy computational elements. They lack the speed and switch-like 
properties of the transistors that form our digital computers.1 

Our poor ability to perform numerical calculations, memorize 
random strings of words, or rapidly intuit the probability of two coins 
coming up heads after throwing four coins into the air are a few of 
the types of tasks the brain is poorly suited to perform. In the face 
of these facts, we should probably also ask to what extent the brain’s 
inherent limitations and biases constrain the progress of science. How 
does the brain’s architecture shape our ability to answer questions that 
it did not evolve to address? Among the many things the brain cer-
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at the instant you zoomed past me). In the equation, v represents the 
velocity between us, and the constant c is again the speed of light:

Because c is a huge number, at everyday velocities, the term  will 
be close to zero, and the denominator will be very close to , that is, 
1. Thus, tme will be approximately equal to t you. This is precisely our 
normal experience: all our clocks tick at the same rate and stay in 
synch because even when we are moving, we do so at low speeds (rel-
ative to the speed of light). But at speeds close to the speed of light, 
clocks will tick at different rates in relation to each other. Going back 
to the example where you are on a train traveling at a third of the 
speed of light, then after one second of travel as measured by your 
clock (t you=1), tme will equal 1.06 seconds. Not a huge difference, but 
if you were traveling at a speed much closer to the speed of light, say 
v=0.999c, for a year (tyou = 1 year), tme comes out to over twenty-two 
years. We say that time has dilated for you: I have aged twenty-two 
years while you have only aged one.6

One of the first experiments to demonstrate time dilation was 
performed by taking atomic clocks on commercial airline flights and 
then comparing their time to earthbound atomic clocks. The clocks 
logged hundreds of hours on eastbound flights (the direction of the 
flight matters because of the rotation of the Earth). As predicted 
by special relativity, the traveling clocks fell behind—by tens of bil-
lionths of a second—the atomic clocks that stayed home at the US 
Naval Observatory in Washington.7 

This and many other experiments have confirmed that time is 
not absolute. Newton was wrong—clock time does not “flow equably 
without regard to anything external.” 
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Figure 9.1: Newton’s Train. Under Newton’s laws, if an observer in the middle of a moving 
train shoots two bullets in opposite directions (t = 0), the panes in the front and back of 

the train will break simultaneously for all observers at t = 1 second. 
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Figure 9.2: Einstein’s Train. At high speeds special relativity tells us that different observers 
will experience space and time differently (making it very tricky to make figures about 
space and time). The clocks in both the train and platform frames are set to read t = 0 

when the front pane of glass reaches the observer on the platform. When the observers 
on the train and platform are in front of each other, the observer in the train will witness 
both panes breaking simultaneously, but for the observer on the platform the back pane 

will have already broken and the front pane will still be intact. 

YourBrainIsATimeMachine_txt_final.indd   165 12/16/16   3:03 PM



184    /    Y O U R  B R A I N  I S  A  T I M E  M A C H I N E

show up for the meeting on Monday or Friday? “Forward” is gener-
ally taken to be in the direction of movement. Thus if you are mov-
ing through a static timeline, and the timeline is moved forward, the 
target day will put it farther away, on Friday. But if you are standing 
still, and we conceptualize time itself to be flowing by you, putting 
the meeting forward will place it closer to you, on Monday. The first 
interpretation (Friday) is described as an ego-moving perspective, and 
the second (Monday) as a time-moving perspective (Figure 10.1).

Figure 10.1: Ego-Moving and Time-Moving Perspectives.

This ambiguity is the linguistic equivalent of Galilean relativity: 
motion must be defined in relation to something. As we have seen, a 
statement such as the speed between you and a lion is 10 km/h, leaves it 
open as to who is doing moving; indeed, in empty space it does not 
really make sense to try to determine who is moving toward whom—
it’s all relative. Nevertheless, in practice it is really useful to know if 
you or the lion is actively moving; so we might clarify by saying the 
lion is running towards you at 10 km/h. It is implicit that its speed is 
in relation to our standard frame of reference, the ground. When it 
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Piaget, for one, was captivated by such parallels. He seems to have 
believed in a deeper link between a child’s inherently relative notion 
of time and the relativistic time of Einstein.22 But any apparent paral-
lel between special relativity and our perception of time is simply that. 
The interdependence of space and time in physics reveals something 
profound about the universe, but tells us nothing about the psychology 
of time. The fact that distance can influence our temporal judgments 
reveals nothing about the true physical nature of space and time, but 
it does unveil something profound about the brain’s architecture.23 But 
what exactly? There are, no doubt, multiple answers to this question. 
One is that from our first to our last breath the brain records the statis-
tics of what we see, hear, and experience, and uses any patterns it finds to 
make sense of the world around us. Consider the image in Figure 10.2:

Figure 10.2: Concave-Convex Illusion. We see the middle circle with a dark lower edge as 
convex (popping out of the page) and the circles with dark upper edges as concave 

because the brain assumes light comes from above.

Presumably, of the three circles, the middle one provides the 
illusion of being convex—as if it were rising out of the page—while 
the circles on either side of it give the impression of being concave—
resembling a hole dug into the page (if you turn the page upside down 
you will see that the circles only differ in their orientation, and that 
the middle circle now appears to be concave). This illusion is a con-
sequence of the fact that from the day you were born, your visual 
system has been sampling the statistics of the world: light generally 
comes from above, so a bump on the wall will cast a shadow on its 
lower half, whereas a hole will produce a shadow along its upper lip. 
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