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Figure 1.1: A phrenology chart from the nineteenth century.
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Figure 1.2: Two views of the nature of time: presentism versus eternalism.
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Figure 2.1: Neurons and synapses. Image of two cortical neurons. The axon of the lower,
presynaptic neuron connects to a dendrite of the upper, postsynaptic neuron via
a synapse (not visible). An action potential—a fast “spike” in the voltage—in the
presynaptic neuron produces a small increase in the voltage of the postsynaptic neuron
(called an excitatory postsynaptic potential, EPSP). (Modified with
permission from Feldmeyer et al., 2002)
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Figure 2.2: Spike-timing-dependent plasticity. Tw0 neurons reciprocally connected to
each other by two synapses (represented by the black triangles). If the lower neuron
consistently fires before the upper one, the synapse from the lower to the upper
neuron will get stronger (synaptic potentiation), and the synapse from the upper to
lower neuron will get weaker (synaptic depression).



nli‘.'ii i“: . f L T T O T T
L AR EMRLA . Allausinint
(/)] u‘-u‘ “ -mn.:::. h MI.A..
%‘ s e T T e
D pren :l : AL M G .lt -A Y Btk bGd )
[T YT TR i 4 sttt 1.0 e ) LT
L T T R T LA M
YT T T L T LA 8
I T u . " o]
- ; ety '\ ame < O
A ; T T R
3t 1 PP : wusssansay D O
. i ‘ T T 35
“- W S MANG by
P TR TN O Y 5 (/]
‘ . Min sl MosuE S0l b i - LRGN KRN SN ~—e
T § CTITTE D Q
‘. P . [T T
a1 L6 ANLS T A =}
Lo VA LA 0L a . (7 ="
Ghrwak el L A b | 4 . Al AL KL L AL “ .
et MR “ ’ aus M AYE
AU MU 4 . T -
PN T (Gl MMUAMLERY ML kAN, 4

Figure 3.1: Running wheels and actograms. The nocturnal activity of a mouse is indicated
by the black tick marks, which represent the revolutions of a running wheel. If mice
are kept in constant darkness, their circadian rhythm continues with a period of
approximately 23.5 hours, resulting in a progressive leftward shift of the activity
pattern. Actograms are double- plotted, meaning that the same 24-hour period is
represented at the end of a row and the beginning of the row below it.
(Modified from Yang et al., 2012 under CC BY license)



23-hour strain

m§°cﬂ9%
& % -
B

LA L S 24

%

°

o
& % 2y A% ALY
B
o © % ¢ st
Domp

30-hour strain
P £ QM"

FA S s %
%f&\x,,_,f b Ay g
1 1 1 1

0 24 48 72 96

Hours in constant light

Light Emitted

00 °

o

Figure 3.2: Fast and slow circadian rhythms in cyanobacteria. The circadian rhythms of two
strains of cyanobacteria with periods of approximately 23 and 30 hours. The bacteria
were genetically engineered to emit light in a manner proportional to the concentration
of a specific protein. When these strains are forced to compete with each other for
resources in an environment with a 23-hour light-dark, the 23-hour strain will win; in
contrast, if they are placed in a 30-hour light-dark cycle, the 30-hour strain will win.
(Adapted with permission from Johnson et al., 1998)
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Figure 4.1: (Paul Noth/The New Yorker Collection/The Cartoon Bank)
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Figure 5.1: Interval Discrimination Task.
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Figure 5.2: Synfire Chain. In a synfire chain model individual neurons (or groups of neurons)
are connected in a feed-forward fashion. Activity—action potentials represented by
“spikes” in voltage—propagates throughout the network much like a pattern of falling
dominos. Time from the activation of the first neuron in the chain can be encoded
by which neuron is currently active.



Figure 6.1: Ripples. Time is naturally encoded in
the state of dynamical systems. Here it is clear
which raindrop fell first, and it would be possible to
estimate the interval between the raindrops.
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Figure 6.2: Short-term synaptic plasticity. On the time scale of milliseconds
the strength of a synapse can undergo short-term depression (above) or
short-term synaptic facilitation (below). (Traces from Reyes and Sakmann, 1999)
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Figure 6.3: Interval selectivity based on short-term synaptic plasticity.
A. In this simulation of a simple neural circuit, a single input neuron contacts an
excitatory (top) and inhibitory (bottom) neuron. The traces capture the voltage
deflections in response to three different intervals: the input neuron fires two
spikes separated by 50, 100, or 200 ms. The synapses from the input onto
both neurons undergo short-term facilitation—for example, the amplitude of the
voltage signal in response to the second spike of a 50 ms stimulus is
larger than the voltage deflection caused by the first spike.
B. Depending on the strength of the synapses from the input to the excitatory
and inhibitory neurons, the excitatory neuron can selectively respond to
a b0 (left) or 100 ms (right) interval—thus the excitatory neuron in this simple
circuit can, in a sense, tell time.
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Figure 6.4: Encoding time in the changing states of the windows of a building. The states of the
three windows at each point in time (shown in the table on the left) are equivalently

represented as a trajectory in 3D space (right).



Perhaps our bank of Christmas lights has two switches, one con-
trolled by Alice and one by Bob. Perhaps Alice’s switch activates the
following spatial patterns of lights at 1 sec intervals (where each num-

ber represents the position of the light in the chain):

t=1 5 10 15 20
t=2 6 12 18 24
t=3 7 14 21 28

whereas Bob’s switch produces the following sequence of illumination

(note that in this example each pattern follows a specific algorithm):

t=1 1234
t=2 1468
=3 16912



Time

Step Run 1 Run 2
1 0.9900 0.99001
2 0.0386 0.0386
3 0.1448 0.1446
4 0.4829 0.4825
5 0.9739 0.9738
6 0.0993 0.0995
7 0.3488 0.3494
8 0.8859 0.8866
9 0.3943 0.3922

10 0.9314 0.9296
1 0.2492 0.2551
12 0.7296 0.7410
13 0.7694 0.7484
14 0.6920 0.7343
15 0.8313 0.7609
16 0.5471 0.7095
17 0.9664 0.8038
18 0.1268 0.6150

0.8

0.6

0.4

0.2

Xy, =3.9%,(1-Xx,)

2 4 6 8 10 12 14 16 18 20
Time Step

Figure 6.5: Example of an equation that exhibits chaos. In this equation the value of x at each
subsequent time step (¢+1) is determined by the value of x at the current time step ().
Even when starting with two close values of xin Run 1 and Run 2 (0.99 and 0.99001,
respectively), the values of x will diverge over time, as shown in the table and graph.
The divergence will be imperceptible at first, but after eighteen steps or so

the values of x in both runs will be unrelated to each other.



Input ; ®

Output

Time

Figure 6.6: A recurrent network that generates a time-varying motor pattern. In this simulation
a recurrent neural network is composed of interconnected units representing neurons
(schematized in the middle of the top panel). The units in the recurrent network receive
a brief input signal, and contact two output units. The activity in these two output units
corresponds to the positions of a pen on the X and Y axes of a graph. Training consists
of tuning the weights of the connections of the recurrent units onto the output units
with a learning rule. After training, in response to a brief input the recurrent network
generates a complex pattern of activity that drives the outputs in a manner that writes
the word “Chaos.” Motor patterns, such as handwritten digits, are inherently temporal,
so the network also encodes time. The shaded dots imposed on the lines represent
time. The network is not chaotic, as demonstrated by the fact that the motor pattern
recovers after perturbing the recurrent network during the upswing of the “h” (ten trials
are overlaid). (Modified from Laje and Buonomano, 2013)
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Figure 9.1: Newton’s Train. Under Newton’s laws, if an observer in the middle of a moving
train shoots two bullets in opposite directions (t = 0), the panes in the front and back of
the train will break simultaneously for all observers att = 1 second.
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Figure 9.2: Einstein’s Train. At high speeds special relativity tells us that different observers
will experience space and time differently (making it very tricky to make figures about
space and time). The clocks in both the train and platform frames are settoreadt = 0

when the front pane of glass reaches the observer on the platform. When the observers
on the train and platform are in front of each other, the observer in the train will witness

both panes breaking simultaneously, but for the observer on the platform the back pane
will have already broken and the front pane will still be intact.
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Figure 10.1: Ego-Moving and Time-Moving Perspectives.



Figure 10.2: Concave-Convex lllusion. We see the middle circle with a dark lower edge as
convex (popping out of the page) and the circles with dark upper edges as concave
because the brain assumes light comes from above.






